[1]梁永仁, 吴引江, 周济, 等. 点阵结构金属多孔材料制造技术[J]. 金属功能材料, 2012, 19(1): 63-67.
Liang Y R, Wu Y J, Zhou J, et al. Manufacturing technology on porous lattice metallic materials[J]. Metallic Functional Materials, 2012, 19(1): 63-67.
[2]Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3-4): 309-327.
[3]赵冰, 李志强, 侯红亮, 等. 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45(8): 2189-2200.
Zhao B, Li Z Q, Hou H L, et al. Research progress on fabrication methods of metal three dimensional lattice structure[J]. Rare Metal Materials & Engineering, 2016, 45(8): 2189-2200.
[4]Maskery I, Hussey A, Panesar A, et al. An investigation into reinforced and functionally graded lattice structures[J]. Journal of Cellular Plastics, 2016, 53(2): 256-263.
[5]Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting[J]. Acta Materialia, 2016, 113: 56-67.
[6]Liu F, Zhang D Z, Zhang P, et al. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting[J]. Materials, 2018, 11(3): 374-387.
[7]Warmuth F, Osmanlic F, Adler L, et al. Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting[J]. Smart Materials & Structures, 2017, 26(2): 025013.
[8]Mines R A W, Tsopanos S, Shen Y, et al. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores[J]. International Journal of Impact Engineering, 2013, 60(10): 120-132.
[9]Horn T J, Harrysson O L A, Marcellin-Little D J, et al. Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting[J]. Additive Manufacturing, 2014, 1-4: 2-11.
[10]Bai L, Xiong F, Chen X, et al. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM[J]. Journal of Mechanical Engineering, 2018, 54(5): 156-165.
[11]Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2013, 12(5): 254-265.
[12]郑世才. 我国射线检测技术近年的发展[J]. 无损检测, 2004, 26(4): 163-167.
Zheng S C. An overview of the latest advancement of radiology in China[J]. Nondestructive Testing, 2004, 26(4): 163-167.
[13]敬人可, 李建增, 周海林. 超声无损检测技术的研究进展[J]. 国外电子测量技术, 2012, 31(7): 28-30.
Jing R K, Li J Z, Zhou H L. Research progress of ultrasonic NDT technology[J]. Foreign Electronic Measurement Technology, 2012, 31(7): 28-30.
[14]郭健, 张丹, 马国义, 等. 无损检测(NDT)——磁粉检测(MT)技术[J]. 工程与试验, 2011, 51(3): 55-58.
Guo J, Zhang D, Ma G Y, et al. Nondestructive testing-magnetic particle testing technology[J]. Engineering & Test, 2011, 51(3): 55-58.
[15]张可佳,张碧丰,熊利民,等. EL红外缺陷测试仪关键参量校准方法研究[J]. 计量学报, 2018, 39(2): 246-250.
Zhang K J, Zhang B F, Xiong L M, et al. Research on Calibration Method Key Parameters of EL Infrared Defect Tester[J]. Acta Metrologica Sinica, 2018, 39(2): 246-250.
[16]刘晴岩. 液体渗透检测的可靠性[J]. 无损检测, 2002, 24(9): 381-383.
Liu Q Y. Reliability of liquid penetrant inspection[J]. Nonde Structive Testing, 2002, 24(9): 381-383.
[17]García-Martín J, Gómez-Gil J, Vázquez-Sánchez E. Non-destructive techniques based on eddy current testing[J]. Sensors, 2011, 11(3): 2525-2565.
[18]田源. 基于混合远景和近景区域暗通道算法的图像去雾研究[J]. 计量学报, 2019, 40(4): 583-588.
Tian Y. Image Dehazing Based on Near and Far Scene Dark Channel Prior[J]. Acta Metrologica Sinica, 2019, 40(4): 583-588.
[19]郭文佳, 王向军. 基于实时帧间处理算法的爆点目标检测[J]. 计量学报, 2006, 27(z1): 38-41.
Guo W J,Wang X J. Detection Smoke Target Based on Real-time Difference in Image Sequences[J]. Acta Metrologica Sinica,2006, 27(z1): 38-41.
[20]孔明, 孟繁明, 王道档, 等. 圆柱工件表面缺陷视觉检测补偿方法研究[J]. 中国计量大学学报, 2018, 29(3): 244-250.
Kong M, Meng F M, Wang D D, et al. Research on a compensation method for the visual inspection of cylindrical workpiece defects[J]. Journal of China University of Metrology, 2018, 29(3): 244-250. |