|
|
Research the Progresses on Measurement of Thermal Conductivity of Graphene and Graphenes Composites |
ZHOU Yi1,2,3,LIN Hong2,FENG Xiao-juan2,QIU Ping2,SHE Shi-gang1,ZHANG Jin-tao2 |
1. School of Mechanical Engineering, Chang Zhou University, Changzhou, Jiangsu 213164, China
2. National Institute of Metrology, Beijing 100029, China
3. Changzhou Institute of Inspection & Testing & Standardization and Certification, Changzhou, Jiangsu 213164, China |
|
|
Abstract Graphene, which has thermal conductivity surpasses most materials and broad application prospects, is a hot and difficult topic in current material research. Over the past decade, due to the rapid development of graphene industry, the accurate measurement of graphenes thermal conductivity is becoming more and more urgent. Definitions, preparation methods of graphene and graphenes composites and application in heat dissipation are reviewed. Traditional measurement methods of thermal conductivity, the laser flash-Raman spectroscopy method and electrothermal microbridge method for graphene are introduced. The measured values reported in some existing literatures are also compared. Prepared and measured samples which compounded of reduced graphene oxide and polypropylene by injection moulding, then find serious anisotropy form the measurement results of thermal diffusivity. Also, other problems in the measurement are pointed out and the causes of these problems are analyzed. Finally, summarize and prospect the measurement research on thermal conductivity of graphene and graphene‘s composites.
|
Received: 16 May 2019
Published: 17 February 2020
|
|
|
|
|
[1]Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle grapheme superlattices [J]. Nature, 2018, 556(7699): 43-50.
[2]Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(5): 80-84.
[3]Sharon M. 石墨烯改变世界的新材料[M]. 北京: 机械工业出版社, 2017.
[4]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[5]史冬梅, 何大方, 张雷. 石墨烯材料发展现状与趋势[J]. 科技中国, 2018, 1: 3-6.
Shi D M, He D F, Zhang L. Development and trend of graphene materials[J]. Science and technology of China, 2018, 1: 3-6.
[6]王宗成, 王淑华. 石墨烯材料、器件与电路的研究现状[J]. 微纳电子术, 2015, 52(10): 613-619, 628.
Wang Z C, Wang S H. Research status of materials, devices and circuits for graphere[J]. Micronanoelectronic Technology, 2015, 52(10): 613-619, 628.
[7]Chu K, Jia C C. Enhanced strength in bulk grapheme-copper composites[J]. Phys Status Solidi A, 2014, 211(1): 184-190.
[8]Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Graphene-based engine oil nanofluids for tribological applications[J]. Applied Materials & Interfaces, 2011, 3(11): 4221-4227.
[9]Abdollah S, Mehran D, Paolo F, et al. An overview of metal matrix nanocomposites reinforced with graphene nanoplatelet; mechanical, electrical and thermophysical properties[J]. Metals, 2018, 8(6): 423-455.
[10]Park S, He S, Wang J N, et al. Graphene-polyethylene nanocomposites: effect of graphene functionalization[J]. Polymer, 2016, 104: 1-9.
[11]Liu L T, Kong L, Wang H X, et al. Effect of graphene oxide nanoplatelets on the thermal characteristics and shape-stabilized performance of poly (styrene-co-maleic anhydride)-g-octadecanol comb-like polymeric change materials [J]. Solar Energy Materials & Cells, 2016, 149: 40-48.
[12]盛祥勇,任玲玲,姚雅萱,等.温度对堆叠双层石墨烯层间耦合的影响[J]. 计量学报, 2018, 39(6): 791-796.
Sheng X Y,Ren L L,Yao Y X,et al.The Influence of Temperature on Interlayer Coupling of Stacking Bilayer Graphene[J]. Acta Metrologica Sinica, 2018, 39(6): 791-796.
[13]任玲玲, 卜天佳, 唐琪雯, 等. 石墨烯NQI技术调研[J]. 中国计量, 2018, 2: 101-104.
Ren L L, Bu T J, Tang Q W, et al. Investigation of graphene NQI Technology[J]. China Metrology, 2018, 2: 101-104.
[14]任玲玲. 石墨烯材料NQI技术全链条实施经验谈[J]. 计量学报, 2019, 40(3): 538-540.
Ren L L. The experience from full chain implementation of NQI technologies based on graphene related productions[J]. Acta Metrologica Sinica, 2019, 40(3): 538-540.
[15]Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Letters, 2008, 8(3): 902-907.
[16]GB/T 30544. 13-2018 纳米科技术语 第13部分: 石墨烯及相关二维材料[S].
[17]ISO/TS 80004-13:2017 Nanotechnologies—Vocabulary—Part 13:Graphene and related two-dimensional (2D) materials[S].
[18]Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11): 1350-1375.
[19]Graf D, Molitor F, Ensslin K, et al. Spatially resolved raman spectroscopy of single-and few-layer graphene[J]. Nano Letters, 2007, 7(2): 238-242.
[20]Chen S S, Moore A L, Cai W W, et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments[J]. ACS Nano, 2011, 5(1): 321-328.
[21]王琛英, 景薇宣, 蒋庄德, 等. 采用HRTEM对石墨烯材料单层厚度测量的研究[J]. 计量学报, 2017, 38(2): 145-148.
Wang C Y, Jing W X, Jiang Z D, et al. The measurement of single-layer thickness of graphene materials by high resolution transmission electron microscopy[J]. Acta Metrologica Sinica, 2017, 38(2): 145-148.
[22]T/CGIA 001-2018 石墨烯材料术语和代号[S].
[23]Kim W J, Lee T J and Han S H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon, 2014, 69: 55-56.
[24]Calizo I, Bejenari I, Rahman M, et al. Ultraviolet raman microscopy of single and multilayer grapheme[J]. Applied Physics, 2009, 106(4): 043509.
[25]周志峰, 张小敏, 毛勤卫, 等. 冷壁CVD法制备石墨烯层数检测方法研究[J]. 计量与测试术, 2018, 45(11): 54-56.
Zhou Z F, Zhang X M, Mao Q W, et al. A study of method to measure the layer number of CVD growth of graphene[J]. Metrology & Measurement Technique, 2018, 45(11): 54-56.
[26]杨桦, 冯世成. 石墨烯材料的制备与表征[J]. 广东化工, 2018, 45(5): 13-14+21.
Yang H, Feng S C. Preparation and Characterization of Graphene Material[J]. Guangdong Chemical Industry, 2018, 45(5): 13-14+21.
[27]Tang L C, Wan Y J, Yan D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites[J]. Carbon, 2013, 60: 16-27.
[28]曹宇臣, 郭鸣明. 石墨烯材料及其应用[J]. 石油化工, 2016, 45(10): 1149-1159.
Cao Y C, Guo M M. Graphene materials and its applications[J]. Petrochemical Technology, 2016, 45(10): 1149-1159.
[29]郭强, 赵蕾, 李赞, 等. 金属的石墨烯强韧化[J]. 中国材料进展, 2019, 39(3): 205-213.
Guo Q, Zhao L, Li Z, et al. Strengthening and toughening of graphene-reinforced metal matrix composites[J]. Materials China, 2019, 39(3): 205-213.
[30]王正君, 申亚军, 周醒, 等. 聚丙烯/石墨烯纳米复合材料的研究进展[J]. 弹性体, 2016, 26(6): 74-78.
Wang Z J, Shen Y J, Zhou X, et al. Research progress on PP/graphene nanocomposites[J]. China Elastomerics, 2016, 26(6): 74-78.
[31]Duan J, Wang X, Andrei E, et al. High thermoelectric power factor in graphene/hBN devices[J]. Proceedings of the National Academy of Sciences, 2016, 113(50): 14272-14276.
[32]Yu X, Zhang B G, Zhao S A, et al. Enhancement of heat dissipation in LED using Graphene and Carbon Nanotubes[J]. ECS Journal of Solid State Science and Technology, 2018, 7(10): M153-M160.
[33]郭利. 导热塑料在LED散热器的应用与优化设计[J]. 塑料工业, 2019, 47(3): 135-139.
Guo L. Application and optimization design of thermal conductive plastics in LED radiator[J]. China Plastics Industry, 2019, 47(3): 135-139.
[34]李松荣, 胡照会, 黄其忠, 等. 石墨烯/聚合物复合材料导热性能研究进展[J]. 高分子材料科学与工程, 2018, 34(9): 184-190.
Li S R, Hu Z H, Huang Q Z, et al. Progress in thermal conductivity of graphene/polymer composites[J]. Polymer Materials Science & Engineering, 2018, 34(9): 184-190.
[35]Hammerschmidt U. Guarded hot-plate(GHP) method: uncertainty assessment[J]. International Journal of Thermophysics, 2002, 23(6): 1551-1570.
[36]潘江, 林娜, 王玉刚. 瞬态热线法导热系数测量实验数据处理方法的研究[J]. 计量学报, 2015, 36(4): 384-388.
Pan J, Lin N, Wang Y G, et al. Data analysis for thermal conductivity measurement using transient Hot-wire method[J]. Acta Metrologica Sinica, 2015, 36(4): 384-388.
[37]徐慧, 杨杰. 瞬态热带法和瞬态平面法测量材料热传导系数[J]. 测控技术, 2004, 23(11): 71-73.
Xu H, Yang J. Measurement of materials thermal conduction coefficient with THS and TPS[J]. Measurement & Control Technology, 2004, 23(11): 71-73.
[38]Hammerschmidt U, Sabuga W. Transient hot strip (THS) method: uncertainty assessment[J]. International Journal of Thermophysics, 2000, 21(1): 217-247.
[39]Parker W J, Jenkins R J, Butler C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684.
[40]Hammerschmidt U, Meier V. New transient hot-bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat[J]. International Journal of Thermophysics, 2006, 27(3): 840-865.
[41]Jo I, Pettes M T, Kim J, et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride[J]. Nanol Letters, 2013, 13(2): 550-554.
[42]Cai W W, Moore A L, Zhu Y W, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nanol Letters, 2010, 10 (5): 1645-1651.
[43]Chen S S, Li Q Y, Zhang Q M, et al. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping[J]. Nanotechnology, 2012, 23(36): 365701.
[44]Li Q Y, Zhang X, Hu Y D. Laser flash Raman spectroscopy method for thermophysical characterization of 2D nanomaterials[J]. Thermochimica Acta, 2014, 592: 67-72.
[45]Li Q Y, Ma W G, Zhang X. Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials[J]. International Journal of Heat and Mass Transfer, 2016, 95: 956-963.
[46]Li Q Y, Xia K L, Zhang J, et al. Measurement of specific heat and thermal conductivity of supported and suspended grapheme by a comprehensive Raman optothermal method[J]. Nanoscale, 2017, 9(30): 10784-10793.
[47]Jo I, Pettes M T, Lindsay L, et al. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods[J]. AipAdvances, 2015, 5(5): 053206.
[48]Jang W, Bao W, Jing L, et al. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method[J]. Applied Physics Letters, 2013, 103(13): 133102.
[49]Zheng J L, Wingert M C, Moon J Y, et al. Simultaneous specific heat and thermal conductivity measurement of individual nanostructures[J]. Semiconductor Science and Technology, 2016, 31(8): 084005.
[50]Klemens P G, Pedraza D F. Hermal Conductivity of Graphite in the basal plane[J]. Carbon, 1994, 32(4): 735-741.
[51]Lindsay L, Broido D A, Natalio Mingo. Flexural phonons and thermal transport in multilayer graphene and graphite[J]. Physicl Review B, 2011, 83(23): 235428.
[52]Adamyan V, Zavalniuk V. Lattice thermal conductivity of grapheme with conventionally isotopic defects[J]. J Phys: Condens, 2012, 24(41): 415401.
[53]Jacimovski S K, Bukurov M, Setrajcic J P, et al. Phonon thermal conductivity of grapheme[J]. Superlattices and Microstructures, 2015, 88: 330-337.
[54]Kim T Y, Park C H, Marzari N. The electronic thermal conductivity of grapheme[J]. Nanol letters, 2016, 16(4): 2439-2443.
[55]Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.
[56]Renteria J, Nika D, Balandin A. Graphene thermal properties: applications in thermal management and energy storage[J]. Applied Sciences, 2014, 4(4): 525-547.
[57]陈宇强, 肖小亭, 张婧婧, 等. 聚丙烯/石墨烯微片纳米复合材料的导电导热性能[J]. 塑料, 2016, 45(6): 57-59.
Chen Y Q, Xiao X T, Zhang J J, et al. Electrical and thermal conductivity of polypropylene/graphene nanoplatelet nanocomposite[J]. Plastics, 2016, 45(6): 57-59.
[58]韦刘洋, 刘定福, 梁基照. 聚丙烯/石墨烯片纳米复合材料阻燃及导热性能[J]. 工程塑料应用, 2016, 44(10): 98-101.
Wei L Y, Liu D F, Liang J Z. Fire retardancy and thermal conductivity properties of PP/GNPs nano-platelets composites[J]. Engineering Plastics Application, 2016, 44(10): 98-101.
[59]汪文, 丁宏亮, 张子宽, 等. 石墨烯微片/聚丙烯导热复合材料的制备与性能[J]. 复合材料学报, 2013, 30(6): 14-20.
Wang W, Ding H L, Zhang Z K, et al. Preparation and properties of graphene nanoplatelets/PP thermal conductive compssities[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 14-20.
[60]余浩斌, 张婧婧, 何穗华, 等. 石墨烯微片的尺寸和形态对聚丙烯基纳米复合材料导电导热性能的影响[J]. 中国塑料, 2018, 32(2): 52-58.
Yu H B, Zhang J J, He S H, et al. Effects of size and shape of graphene nanoplatelet(GNP) on electrical and thermal conductivity of PP/GNP nanocomposites[J]. China Plastics, 2018, 32(2): 52-58.
[61]Goli P, Ning H, Li X, et al. Thermal properties of grapheme-copper-graphene heterogeneous films[J]. Nanol letters, 2014, 14(3): 1497-1503.
[62]Babul T, Baranowski M, Sobczak N, et al. Thermophysical properties of cu-matrix composites manufactured using cu powder coated with grapheme[J]. Journal of Materials Engineering and Performance, 2016, 25(8): 3146-3151.
[63]Chen F Y, Ying J M, Wang Y F, et al. Effects of graphene content on the microstructure and properties of copper matrix composites[J]. Carbon, 2016, 96: 836-842.
[64]Kim S, Kwon H C, Lee DY, et al. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets[J]. Metals and Materials International, 2017, 23(6): 1144-1149.
[65]Lin C J, Lin I C, Tuan W H. Effect of graphene concentration on thermal properties of alumina–graphene composites formed using spark plasma sintering[J]. Journal of Materials Science, 2017, 52(3): 1759-1766.
[66]Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. MRS Bulletin, 2012, 37(12): 1273-1281. |
|
|
|