|
|
Analysis and Evaluation of Heat Pipe Heat Exchanger's Performance with Low Global Warming Potential Refrigerant |
ZHANG Shi-jie1,LI Zhun1,ZHOU Feng2,SUN Shu-fang2,MA Guo-yuan2 |
1. National Institute of Metrology, Beijing 100029, China
2. Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Due to alternative refrigerants requirement a heat pipe heat exchanger was developed charged with refrigerant R32, which owns low global warming potential. Experimental study and evaluations had been done in the standard psychrometric laboratory upon heat pipe heat exchanger charged with R32 under different working conditions according to its thermodynamic characteristics. For performance evaluation the energy, energy efficiency and exergy were adopted in both quantity and grade basing on the first and second law of thermodynamics. The results indicate that refrigerant R32 shows better performance for winter conditions compared to summer conditions, especially in temperature effectiveness, heat transfer rate, energy efficiency ratio, dimensionless entropy generation rate and exergy loss merit. Compared to parallel heat exchangers, the temperature effectiveness of inclined heat exchanger increases by 11.7 to 12.9% averagely with 5 degree inclination angle, and energy efficiency ratio (EER) rises by 0.6 to 3. The dimensionless entropy generation rate decreases by 0.012 in summer and 0.0024 in winter when the indoor and outdoor temperature difference increases by 1 degree for parallel heat exchanger. For inclined heat exchanger, the exergy loss rate merit increases by 0.0159 in summer and 0.0015 in winter for one degree.
|
Received: 16 October 2020
Published: 23 March 2021
|
|
|
|
|
[1]王英杰, 张林华, 庄兆意. 基于余热回收的热管换热器应用研究[J]. 节能, 2015, 34(7): 58-61.
[2]张海云, 余跃进. 热管换热器在空调排风热回收中的应用[J]. 南京师范大学学报(工程技术版), 2015, 15(2): 33-40.
Zhang H Y, Yu Y J. Application of the Heat Pipe Heat Exchanger in Air Conditioning System for Heat Recovery from the Exhaust Air[J]. Journal of Nanjing Normal University, 2015, 15(2): 33-40.
[3]张小松, 李舒宏. 板翅式换热器用于空调系统排风能量回收的研究[J]. 通风除尘, 1998, 17(3): 4-7.
[4]江亿. 我国建筑耗能状况及有效的节能途径[J]. 暖通空调, 2005, 35(5): 30-40.
Jiang Y. Current Building Energy Consumption in China and Effective Energy Efficiency Measures[J]. HV&AC, 2005, 35(5): 30-40.
[5]樊旭, 马国远, 周峰. 我国空调换气热回收技术应用的潜力分析[C]//中国制冷学会. 走中国创造之路——2011中国制冷学会学术年会论文集, 中国制冷学会: 中国制冷学会, 2011: 446-450.
[6]Dunn P, Reay D A. Heat pipes[R]. Pergamon Press, New York, 1982, 120-123.
[7]王慧. 热管换热器回收空调余热系统的分析[J]. 重庆建筑, 2019, 18(7): 23-25.
Wang H. Analysis of Recovery System of Air Conditioning-produced Waste Heat with Heat Pipe Exchanger[J]. Chongqing Architecture, 2019, 18(7): 23-25.
[8]李棚辉, 韩晓星, 王亚雄, 等. 倾角与冷却水温度对新型闭式重力热管换热器传热性能影响[J]. 制冷学报, 2017, 38(2): 29-33.
Li P H, Han X X, Wang Y W, et al. Influence of Inclination Angle and Cooling Water Temperature on the Heat Transfer Performance of a Novel Closed Gravity Heat Pipe Exchanger[J]. Journal of Refrigeration, 2017, 38(2): 29-33.
[9]周峰, 马国远. 热虹吸管能量回收设备夏季工作特性的实验研究[J]. 暖通空调, 2007, 37(12): 58-62+24.
Zhou F, Ma G Y. Experiment of Characteristics of Thermosiphon Heat Recovery Equipment under Summer Condition[J]. HV&AC, 2007, 37(12): 58-62+24.
[10]张双, 马国远, 张思朝, 等. 热虹吸管换热器的换热性能测试与分析[J]. 化工学报, 2014, 65(S2): 83-87.
Zhang S, Ma G Y, Zhang S C, et al. Heat transfer performance test and analysis of thermosyphon heat exchanger[J]. Chemical Industry Press, 2014, 65(S2): 83-87.
[11]Srimuang W, Amatachaya P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable & Sustainable Energy Reviews, 2012, 16(6): 4303-4315.
[12]Firouzfar E, Soltanieh M, Noie S H, et al. Investigation of heat pipe heat exchanger effectiveness and energy saving in air conditioning systems using silver nanofluid[J]. International Journal of Environmental Science & Technology, 2012, 9(4): 587-594.
[13]刘挺, 汪亮兵, 马国远, 等. 商场用热虹吸管热回收机组适宜工作模式的研究[J]. 暖通空调, 2009, 39(12): 118-122.
Liu T, Wang L B, Ma G Y, et al. Optimal Operation Mode of Thermosyphon Heat Recovery Units for Shopping Centers[J]. HV&AC, 2009, 39(12): 118-122.
[14]李准, 周峰, 刘挺, 等. 商场用热虹吸管热回收机组的运行经济性分析[C]//中国制冷学会, 中国制冷学会2007学术年会论文集. 中国制冷学会: 中国制冷学会, 2007: 331-334.
[15]孙淑芳, 马国远, 周峰. 办公建筑热回收装置节能运行模式分析[J]. 建筑节能, 2016, 44(6): 119-124.
Sun S F, Ma G Y, Zhou F. Energy-Saving Operation Modes for a Heat Recovery Unit in Office Building[J]. Building Energy Efficiency, 2016, 44(6): 119-124.
[16]金听祥, 刘凯涛, 邵双全, 等. 以CO2为制冷剂的微通道换热器热管空调性能试验研究[J]. 低温与超导, 2016, 44(10): 49-53.
Jin T X, Liu K T, Shao S Q, et al. Experimental investigation on the performance of heat pipe air conditioner with micro channel heat exchanger and carbon dioxide as a refrigerant[J]. Cryogenics & Superconductivity, 2016, 44(10): 49-53.
[17]刘挺, 马国远, 汪亮兵, 等. 空调系统热回收装置的季节温度效率评价法[J]. 土木建筑与环境工程, 2010, 32(1): 96-100.
Liu T, Ma G Y, Wang L B, et al. Evaluation of Heat Recovery Unit in Air-Conditioning System with Seasonal Temperature Effectiveness[J]. Journal of Civil and Environmental Engineering, 2010, 32(1): 96-100.
[18]王磊, 马国远, 马安娜, 等. 空气-空气热回收装置的节能评价指标研究[J]. 建筑节能, 2018, 46(11): 57-62.
Wang L, Ma G Y, Ma A N, et al. Energy-saving Evaluation Index of Air to Air Heat Recovery Unit[J]. Building Energy Efficiency, 2018, 46(11): 57-62. |
|
|
|