|
|
Parameter Design and Characteristic Analysis of Torsional Vibration Damper for Main Drive System of Rolling Mill |
LIU Bin,WANG Ying-hui,JIANG Jia-lei,SHI Pei-ming |
School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract A torsional vibration damper control device is introduced for the torsional vibration phenomenon of the rolling mill main drive system under the sudden load of biting steel. Establishing torsional vibration suppression model of motor and torsional vibration damper. The characteristic parameters of the damper are designed. The inertia ratio, the tonal ratio and the damping ratio of the damper are obtained. Using the fixed point theory, the optimal tuning ratio and damping ratio are obtained. By comparing the time domain characteristic curves before and after adding the torsional vibration damper, it is concluded that the damper can reduce the vibration amplitude; By adjusting the inertia ratio, torsional stiffness and damping coefficient, the influence of different parameter changes on the amplitude-frequency characteristic curve of the rolling mill main drive system is obtained. Appropriate increase of inertia ratio μ can reduce the vibration amplitude, increasing the torsional stiffness Kd can reduce the unstable region of the system, increasing the damping coefficient Cd can effectively reduce the system torsional vibration amplitude. Therefore, selecting the appropriate parameter values can effectively improve the stability of the rolling mill system.
|
Received: 19 March 2019
Published: 02 November 2020
|
|
|
|
|
[1]Wu S L, Shao Y M, Wang L M, et al. Relationship between vibration marks and rolling force fluctuation for twenty-high roll mill[J]. Engineering Failure Analysis, 2015, 55(1):86-102.
[2]Niu D, Chen X, Yang J, et al. Disturbance observer-based control for raymond mill grinding process[C]//IEEE International Conference on Industrial Technology, Taipei, China, 2016,1765-1770.
[3]刘彬, 姜甲浩, 刘飞, 等. 基于轧件水平振动的轧机辊系振动补偿模型[J]. 计量学报, 2018, 39(1): 56-60.
Liu B, Jiang J H, Liu F, et al. Roller vibration compensation model of rolling mill based on horizontal vibration of rolling stock[J]. Acta Metrologica Sinica, 2018, 39(1): 56-60.
[4]刘彬, 姜佳磊, 潘贵翔, 等. 液压缸非线性弹簧力约束下轧机吸振器参数的优化研究[J]. 计量学报, 2019, 40(3): 378-384.
Liu B, Jiang J L, Pan G X, et al. Study on Optimization of vibration absorber parameters of rolling mill under the constraint of non-linear spring force of hydraulic cylinder[J]. Acta Metrologica Sinica, 2019, 40 (3): 378-384.
[5]崔亚亚, 白振华, 崔熙颖, 等. 六辊轧机冷轧过程边部减薄预报模型[J]. 钢铁, 2018, 53(1): 46-53,78.
Cui Y Y, Bai Z H, Cui X Y, et al. Prediction model of edge thinning in cold rolling process of six-high mill[J]. Iron and Steel, 2018, 53(1): 46-53,78.
[6]Jewik H, Stratford R P, Thomas C W. Torque amplifica-tion and torsional vibration in large mill drives[J]. IEEE Transactions on Industry and General Applications, 1969,(3): 333-346.
[7]孙建亮, 张明, 彭艳. 六辊轧机扭振动态建模及与板带钢质量关系研究[J]. 工程力学, 2014, 31(4): 239-244.
Sun J L, Zhang M, Peng Y. Dynamic modeling of torsional vibration of six high rolling mill and its relation with strip quality[J]. Engineering Mechanics, 2014, 31(4): 239-244.
[8]赵弘, 李华德, 杜伟. 利用外扰模型前馈控制抑制轧机扭振的应用[J]. 钢铁, 2006, 41(8): 49-51.
Zhao H, Li H D, Du W. Application of external disturbance model feedforward control to restrain torsional vibration of rolling mill[J]. Iron and Steel, 2006, 41(8): 49-51.
[9]张瑞成, 童朝南. 基于状态观测器的轧机主传动系统机电振动控制研究[J]. 电气传动, 2005, 35(11): 3-7.
Zhang R C, Tong C N. Research on electromechanical vibration control of main drive system of rolling mill based on state observer[J]. Electrical drive, 2005, 35(11): 3-7.
[10]韩东颖, 李冰洋, 时培明. 基于神经网络-模糊PID的轧机非线性扭振智能控制[J]. 噪声与振动控制, 2016, 36(4):161-164.
Han D Y, Li B Y, Shi P M. Intelligent control of nonlinear torsional vibration of rolling mill based on neural network-fuzzy PID[J]. Noise and Vibration Con-trol, 2016, 36(4): 161-164.
[11]申延智, 杜国君, 刘宏民. 1580热带钢连轧机主传动系统扭振研究[J]. 振动工程学报, 2004, 17(z1): 222-224.
Shen Y Z, Du G J, Liu H M. Torsional vibration of main drive system of 1580 hot strip continuous rolling mill[J]. Journal of Vibration Engineering, 2004, 17(z1): 222-224.
[12]黄华栋, 臧勇. 轧机扭振抑制方法的研究[J]. 机械制造, 2012, 50(7): 30-34.
Huang H D, Zang Y. Research on torsional vibration suppression methods for rolling mills [J]. Machinery Manufacturing, 2012, 50(7): 30-34.
[13]杜国君, 张忠健, 高崇一. 考虑打滑和双间隙影响的厚板轧机主传动系统扭振[J]. 钢铁, 2013, 48(2): 39-43.
Du G J, Zhang Z J, Gao C Y. Torsional vibration of main drive system of heavy plate mill considering slip and double clearance[J]. Iron and Steel, 2013, 48 (2): 39-43.
[14]程力. 汽车传动轴扭转减振器设计及应用[D]. 广州: 华南理工大学, 2017.
[15]吴昱东, 李人宪, 丁渭平, 等. 基于局域共振声子带隙的扭转减振器设计方法[J]. 振动与冲击, 2018, 37 (9): 188-192.
Wu Y D, Li R X, Ding W P, et al. Design method of torsional shock absorber based on local resonance phonon bandgap[J]. Vibration and shock, 2018, 37(9): 188-192.
[16]郦文平, 刘辉, 项昌乐,等. 基于负刚度稳定性的并联扭转减振器控制策略研究[J]. 机械设计与制造, 2018, (S1): 48-50.
Li W P, Liu H, Xiang C L, et al. Control strategy of parallel torsional damper based on negative stiffness stability[J]. Mechanical design and manufacture, 2018, (S1): 48-50.
[17]赵国权. 关于联轴器对内燃机轴系扭振影响及减振的研究[J]. 内燃机与配件, 2018, (8): 79.
Zhao G Q. Research on the influence of coupling on torsional vibration and vibration reduction of internal combustion engine shafting[J]. Internal combustion engines and accessories, 2018, (8): 79. |
|
|
|