|
|
Target Tracking Algorithm Based on Hybrid Correlation Filtering and Information Fusion Redetection |
CHEN Wei-dong1,2,CHEN Lei1,DENG Zhi-wei1,LIU Hong-wei1,DONG Hui-ru1,ZHU Qi-guang1,2 |
1. Institute of Information Science and Engineering, Yanshan University, Qinhuangdao, Heibei 066004, China
2. Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, Hebei 066004, China |
|
|
Abstract In order to reduce the influence of target deformation and complex background changes on the tracking effect during target tracking, a target tracking algorithm based on hybrid correlation filtering information fusion redetection is proposed.Firstly, the correlation filtering algorithm is used to extract the HoG feature of the target gradient histogram, the color template is used to obtain the color feature of the target, and the sampling score of the two templates are calculated.Secondly, the two feature information is combined in a linear combination to determine the target position, during the tracking process, two templates are selected to sample a larger score according to the set threshold condition and then redetect the position of the target.Finally, it outputs results for all the frame target positions.Compared with other excellent algorithms, the algorithm has better tracking effect on dealing with target deformation and background clutter.
|
Received: 01 August 2018
Published: 10 October 2019
|
|
|
|
|
[1]Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: An experimental survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(7): 1442-1468.
[2]Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. Acm computing surveys, 2006, 38(4): 13.
[3]牛长锋, 陈登峰, 刘玉树. 基于SIFT特征和粒子滤波的目标跟踪方法[J]. 机器人, 2010, 32(2): 241-247.
Niu C F, Chen D F, Liu Y S. Tracking Object Based on SIFT Features and Particle Filter[J]. Robot, 2010, 32(2): 241-247.
[4]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. America, Lake Tahoe: NIPS, 2012: 1097-1105.
[5]Wang N Y, Yeung D Y.Learning a deep compact image representation for visual tracking[C]// Advances in neural information processing systems. America, Lake Tahoe. 2013: 809-817.
[6]Wang N Y, Li S, Gupta A, et al. Transferring rich feature hierarchies for robust visual tracking:arXiv: 1501.04587[R]. Ithaca: Cornell University, 2015.
[7]Danelljan M, Hger G, Khan F S, et al.Accurate Scale Estimation for Robust Visual Tracking[C]// British Machine Vision Conference. British, Nottingham: IEEE, 2014: 65.1-65.11.
[8]Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3): 583-596.
[9]Danelljan M, Shahbaz Khan F, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.America, Colombia: IEEE, 2014: 1090-1097.
[10]Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking[C]// Computer Vision and Pattern Recognition. America, Boston: IEEE, 2015: 2113-2120.
[11]Mei X, Ling H. Robust visual tracking using ? 1 minimization[C]//2009 IEEE 12th International Conference on Computer Vision. Japan, Kyoto: IEEE, 2009: 1436-1443.
[12]Zhang K, Zhang L, Yang M H. Real-time compressive tracking[C]//European conference on computer vision.Berlin, Heidelberg: Springer, 2012: 864-877.
[13]Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2003,(5): 564-575.
[14]Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3): 583-596.
[15]Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. America, Portland: IEEE, 2013: 2411-2418. |
|
|
|