|
|
Study on the Time-dependent Change of Attenuation Coefficient of Ultrasound Contrast Agent |
LAN Qing1,2,WANG Yue-bing1,CAO Yong-gang1,CHEN Qian1 |
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Zhejiang Province Institute of Metrology, Hangzhou, Zhejiang 310018, China |
|
|
Abstract To study the influence of microbubble type ultrasound contrast agent (UCA) on the attenuation of acoustic propagation, based on the theoretical model of bubble dynamics to calculate the attenuation of acoustic propagation due to changes in microscopic particle size, and the analytical expression of the attenuation coefficient of the UCA with time variation was deduced. Moreover, an experimental system was built to measure the attenuation coefficient of the UCA. Experimental results verified the validity of the theoretical model and the exponential decay law of the attenuation coefficient of the UCA over time. This study provides a basis for reducing the propagation attenuation and distortion of ultrasound waves, making the UCA are effectively used in the field of ultrasound medicine.
|
Received: 26 March 2018
Published: 05 September 2018
|
|
Fund:the National Natural Science Foundation of China;The National Key Research and Development Program of China |
|
|
|
[1]Tang M X, Eckersley R J. Frequency and pressure dependent attenuation and scattering by microbubbles [J]. Ultrasound Med Biol, 2007, 33(1):164-168.
[2]Commander K W, Prosperetti A. Linear pressure waves in bubbly liquids: Comparison between theory and experiments [J]. J Acoust Soc Am, 1989, 85(6): 732-734.
[3]张忆, 孙辉. 含气泡水的声速及声吸收系数[C]//中国声学学会青年学术会议, 2009.
[4]王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播[J]. 物理学报, 2013, 62(6): 313-317.
[5]赵晓亮, 朱哲民, 周林,等.含气泡液体中声传播的解析解及其强非线性声特性[J].应用声学,1999,18 (6):18-23.
[6]沈壮志, 吴胜举. 声场中气泡群的动力学特性[J].物理学报,2012,61(24):317-323.
[7]Kohei O, Kazuyasu S, Shu T, et al. High intensity acoustic pressure distribution measurement [J]. J Acoust Soc Am, 2013, 134(4):1576-1578.
[8]王成会, 林书玉. 超声波作用下气泡的非线性振动[J].力学学报, 2010, 42(6): 1050-1059.
[9]Chandra M, Peter H. Mathematical modeling of the dilution curves for ultrasonographic contrast agents [J]. J Ultrasound Med 1997, 16(13):471-479.
[10]马大猷. 现代声学理论基础[M]. 北京:科学出版社, 2004:73-86.
[11]赵应征, 鲁翠涛, 李校堃, 等. 超声介导药物靶向递送系统[M]. 北京:化学工业出版社, 2010:44-55.
[12]张忆. 含气泡液体的非线性参数研究[D]. 哈尔滨:哈尔滨工程大学, 2013.
[13]王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播[J]. 物理学报, 2014, 63(3):194-198.
[14]吴胜举,张明铎. 声学测量原理与方法[M]. 北京:科学出版社,2014:220-221.
[15]郑慧峰,曹文旭,王月兵,等. 基于经验模态分解的聚焦超声非线性声场检测[J]. 计量学报, 2017, 38(5): 616-620.
[16]郑慧峰,喻桑桑,王月兵,等. 基于经验模态分解和奇异值分解的振动声调制信号分析方法研究[J]. 计量学报, 2016, 37(4): 398-401. |
|
|
|