[1]Luhmann T, Robson S, Kyle S, et al. Close Range Photogrammetry: Principles, Techniques and Applications[M]. Dunbeath, Scotland, UK: Whittles Publishing, 2006.
[2]Gorthi S, Rastogi P. Fringe projection techniques: Whither we are? [J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.
[3]Dai M, Yang F, Liu C, et al. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector[J]. Optics Communications, 2017, 382: 294-301.
[4]Li B, Zhang S. Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection[J]. Optics and Lasers in Engineering, 2017, 96: 117-123.
[5]Shen Q, Chen W, Zhong M, et al. An improving fringe analysis method based on the accuracy of S-transform profilometry[J]. Optics Communications, 2014, 322: 8-15.
[6]Chen K, Xi J, Yu Y, et al. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns[J]. Applied Optics, 2013, 52(30): 7360-7366.
[7]韦争亮,古耀达,黄志斌,等. 双目立体视觉中特征点三维坐标重构校准研究[J]. 计量学报, 2014,35(2): 102-107.
Wei Z L, Gu Y D, Huang Z B, et al. Research on Calibration of Three Dimensional Coordinate Reconstruction of Feature Points in Binocular Stereo Vision[J]. Acta Metrologica Sinica, 2014, 35(2): 102-107.
[8]潘贝. 基于黑白编码结构光的快速三维重建方法研究[D]. 浙江:浙江工业大学, 2011.
[9]谢捷如,王震. 运用LCD条纹投影进行光学三维轮廓测量[J]. 计量学报. 2008, 29(4):301-304.
Xie J R, Wang Z. Optical 3D Profile Measurements Using LCD Fringe Projection[J]. Acta Metrologica Sinica, 2008, 29(4):301-304.
[10]Zhang Q, Su X, Xiang L, et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(4): 574-579.
[11]Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.
[12]Servin M, Padilla M, Garnica G, et al. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry[J]. Optics and Lasers in Engineering, 2016, 87: 75-82.
[13]Servin M, Garnica G, Padilla J M. 360-degree fringe-projection profilometry of discontinuous solids with 2 co-phased projectors and 1-camera[J]. Physics, 2014. arXiv ID:1412.0049.
[14]Zhong K, Li Z, Zhou X, et al. Enhanced phase measurement profilometry for industrial 3D inspection automation[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1563-1574.
[15]Servin M, Garnica G, Estrada J C, et al. Coherent digital demodulation of single-camera N-projections for 3D-object shape measurement: co-phased profilometry [J]. Optics Express, 2013, 21(21): 24873-24878.
[16]Geng J. 3D surface profile imaging method and apparatus using single spectral light condition: US 6 556 706 [P].2003-04-29.
[17]Zuo C, Chen Q, Gu G H, et al. High-speed three-dimensional profilometry for multiple objects with complex shapes[J]. Optics Express, 2012, 20(17):19493-19510.
[18]Chen K, Xi J, Yu Y, et al. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns[J]. Applied Optics, 2013, 52(30): 7360-7366.
[19]Ekstrand L, Zhang S. Three-dimensional profilometry with nearly focused binary phase-shifting algorithms[J]. Optics Letters, 2011, 36(23): 4518-4520.
[20]Zuo C, Feng F, Gu G, et al. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing[J]. Applied Optics, 2012, 51(19): 4477-4490.
[21]Lohry W, Zhang S. 3D shape measurement with 2D area modulated binary patterns[J]. Optics and Lasers in Engineering, 2012, 50(7): 917-921.
[22]Dai J, Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement[J]. Optics and Lasers in Engineering, 2013, 51(6): 790-795.
[23]Li B, Wang Y, Dai J, et al. Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques[J]. Optics and Lasers in Engineering, 2014, 54(1): 236-246.
[24]高鹏,李勇,涂颜帅,等. 离焦条纹投影三维测量中正弦光栅的二值化方法研究[J]. 光子学报. 2014, 43(5): 0512006.
Gao P, Li Y, Tu Y S, et al. Binarization methods of sinusoidal grating in 3D measurement base on defocused fringe projection[J]. Acta Photonica Sinica, 2014, 43(5): 0512006.
[25]赵立伟,达飞鹏,郑东亮.离焦投影三维测量的二值光栅生成方法[J].光学学报,2016,36(8): 0812005.
Zhao L W, Da F P, Zheng D L. Method for binary grating generation using defocused projection for three-dimensional measurement[J]. Acta Optica Sinica, 2016,36(8): 0812005.
[26]Li B. High quality three-dimensional (3D) shape measurement using intensity-optimized dithering technique[D]. Ames: Iowa State University, 2014.
[27]Dai J, Li B, Zhang S. Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics and Lasers in Engineering, 2014, 53(2): 79-85.
[28]于晓洋,吴海滨,尹丽萍,等. 格雷码与相移结合的结构光三维测量技术[J]. 仪器仪表学报,2007, 28 (12): 2152-2157.
Yu X Y, Wu H B, Yin L P, et al. 3D measurement technology based on structured light by combining Gray code with phase-shift[J]. Chinese Journal of scientific instrument, 2007, 28 (12): 2152-2157.
[29]Zhang Q, Su X, Xiang L, et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(4): 574-579.
[30]Zheng D, Da F, Qian K, et al. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter[J]. Optics Express, 2017, 25(6):4700-4713.
[31]Chen K, Xi J, Yu Y, et al. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns[J]. Applied Optics, 2013, 52(30): 7360-7366.
[32]Budianto B, Lun D. Robust Fringe Projection Profilometry via Sparse Representation[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2016,25(4):1726-1739.
[33]Zhang C, Zhao H, Zhang L, et al. Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry[J]. Measurement Science & Technology, 2015, 26(3): 035201.
[34]Chen X, Yao J, Chen J, et al. A convenient look-up-table-based method for the compensation of non-linear error in digital fringe projection[J]. Theoretical and Applied Mechanics Letters, 2016, 6(1): 49-53.
[35]Pan B, Qian K, Huang L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 2009, 34(4): 416-8.
[36]Zhang W, Yu L, Li W S, et al. Black-Box phase error compensation for digital phase-shifting profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10):2755-2761.
[37]Li Z, Li Y. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry[J]. Optics Letters, 2011, 36(2): 154-6.
[38]Xu Z, Chan Y. Removing harmonic distortion of measurements of a defocusing three-step phase-shifting digital fringe projection system[J]. Optics and Lasers in Engineering, 2017, 90: 139-145.
[39]Zheng D, Da F. Gamma correction for two step phase shifting fringe projection profilometry[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(13): 1392-1397.
[40]Yatabe K, Ishikawa K, Oikawa Y. Compensation of fringe distortion for phase-shifting three-dimensional shape measurement by inverse map estimation[J]. Applied Optics, 2016, 55(22): 6017-6024.
[41]Lei Z, Wang C, Zhou C. Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineering, 2015, 66: 249-257.
[42]Cai Z, Liu X, Jiang H, et al. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 2015, 23(19): 25171-81.
[43]Zheng D, Da F, Kemao Q, et al. Phase error analysis and compensation for phase shifting profilometry with projector defocusing[J]. Applied Optics, 2016, 55(21): 5721-5728.
[44]Zhang S. Comparative study on passive and active projector nonlinear gamma calibration[J]. Applied Optics, 2015, 54(13): 3834-3841.
[45]Xu W, Cumming I. A region-growing algorithm for InSAR phase unwrapping[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 37(1): 124-134.
[46]钱晓凡,李斌,李兴华,等. 横向剪切最小二乘相位解包裹算法的改进[J]. 中国激光,2012, 39(11):193-197.
Qian X F, Li B, Li X H, et al. Improvement of Least-Square Phase Unwrapping Algorithm Based on Lateral Shearing Interferometry[J]. Chinese Journal of Lasers, 2012, 39(11):193-197.
[47]郭媛,吴全,毛琦,等. 基于横向剪切的四向最小二乘相位解包裹算法[J]. 光电子·激光. 2015, 26(10): 1953-1959.
Guo Y, Wu Q, Mao Q, et al. Four directions least-square phase unwrapping algorithm based on lateral shearing interferometry[J]. Journal of Optoelectronics Laser, 2015, 26(10): 1953-1959.
[48]徐建亮,周明安,方晓芬,等. 一种两步相移任意步距相位轮廓测量技术研究[J]. 计量学报,2016, 37(5): 472-475.
Xu J L, Zhou M A, Fang X F, et al. Study on an Two Phase-shifting Profilometry with an Arbitrary Steps Algorithm[J]. Acta Metrologica Sinica, 2016, 37(5): 472-475.
[49]Dai Z, Zha X. An Accurate Phase Unwrapping Algorithm Based on Reliability Sorting and Residue Mask[J]. IEEE Geoscience & Remote Sensing Letters, 2012, 9(2): 219-223.
[50]Lu Y, Zhao W, Zhang X. Quality Map Generation in Two-Dimensional Phase Unwrapping Process by Using Edge Detection Techniques.In: Vision Sensors and Edge Detection[M]. Francisco: Gallegos-Funes (Ed.), InTech, 2010. DOI: 10.5772/10137.
[51]Chen K, Xi J, Yu Y. Quality-guided spatial phase unwrapping algorithm for fast three-dimensional measurement[J]. Optics Communications, 2013, 294: 139-147.
[52]Li W, Fang S. Reliability-guided phase unwrapping algorithm following noncontinuous path based on color fringe projection[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(6): 537-546.
[53]Zheng D, Da F. Phase coding method for absolute phase retrieval with a large number of codewords[J]. Optics Express, 2012, 20(22): 24139-24150.
[54]Xu Y, Jia S, Luo X, et al. Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities[J]. Optics Communications, 2013, 288: 27-30.
[55]Ding Y, Xi J, Yu Y, et al. Absolute phase recovery of three fringe patterns with selected spatial frequencies[J]. Optics and Lasers in Engineering, 2015, 70: 18-25.
[56]Lu J, Mo R, Sun H, et al. Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry[J]. Optics Communications, 2016, 364: 101-109.
[57]Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103.
[58]Dai M, Yang F, Liu C, et al. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector[J]. Optics Communications, 2017, 382: 294-301.
[59]Zhang M, Chen Q, Tao T, et al. Robust and efficient multi-frequency temporal phase unwrapping:optimal fringe frequency and pattern sequence selection[J]. Optics Express, 2017, 25(17):20381-20400.
[60]Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334.
[61]张广军. 机器视觉[M]. 北京:科学出版社, 2005, 24-31.
[62]Liu Y. Accuracy improvement of 3D measurement using digital fringe projection[J]. Equine Veterinary Journal, 2015, 36(8): 683-688.
[63]Zhang W, Li W, Yu L, et al. Sub-pixel projector calibration method for fringe projection profilometry[J]. Optics Express, 2017, 25(16): 19158-19169.
[64]Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.
[65]李中伟,史玉升,钟凯,等. 结构光测量技术中的投影仪标定算法[J]. 光学学报, 2009, 29(11): 3061-3065.
Li Z W, Shi Y S, Zhong K, et al. Projector Calibration Algorithm for the Structured Light Measurement Technique[J]. Acta Optica Sinica, 2009, 29(11): 3061-3065.
[66]Huang Z, Xi J, Yu Y, et al. Accurate projector calibration based on a new point-to-point mapping relationship between the camera and projector images[J]. Applied Optics, 2015, 54(3): 347-356.
[67]Li B, Karpinsky N, Zhang S. Novel calibration method for structured-light system with an out-of-focus projector[J]. Applied Optics, 2014, 53(16): 3415-3426.
[68]Merner L, Wang Y, Zhang S. Accurate calibration for 3D shape measurement system using a binary defocusing technique[J]. Optics and Lasers in Engineering, 2013, 51(5): 514-519.
[69]Wang Y, Cai B, Wang K, et al. Out-of focus color camera calibration with one normal-sized color-coded pattern[J]. Optics and Lasers in Engineering, 2017, 98: 17–22.
[70]李万松,苏礼坤,苏显渝. 相位检测面形术在大尺度三维面形测量中的应用[J]. 光学学报, 2000, 20(6): 792-796.
Li W S, Shu L K, Shu X Y. Phase-Measuring Profilometry in Big Scale Measurement[J]. Acta Optica Sinica, 2000, 20(6): 792-796.
[71]Du H, Wang Z. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system[J]. Optics Letters, 2007, 32(16): 2438-2440.
[72]Xiao Y, Cao Y, Wu Y. Improved algorithm for phase-to-height mapping in phase measuring profilometry[J]. Applied Optics, 2012, 51(8): 1149-1155.
[73]盖绍彦. 光栅投影三维测量系统的关键技术研究[D]. 南京:东南大学, 2008.
[74]Huang J, Wu Q. A new reconstruction method based on fringe projection of three-dimensional measuring system [J]. Optics and Lasers in Engineering, 2014, 52(1): 115-122.
[75]Yu L, Zhang W, Li W, et al. Simplification of high order polynomial calibration model for fringe projection profilometry[J]. Measurement Science & Technology, 2016, 27(10):105202.
[76]Ekstrand L, Zhang S. Autoexposure for three-dimensional shape measurement using a digital-light-processing projector[J]. Optical Engineering, 2011, 50(12):123603.
[77]Jiang H, Zhao H J, Li X D. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces[J]. Optics and Lasers in Engineering, 2012, 50: 1484–1493.
[78]Feng S, Zhang Y, Chen Q, et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J]. Optics and Lasers in Engineering, 2014, 59:56-71.
[79]Zhang B, Ouyang Y, Zhang S. High dynamic range saturation intelligence avoidance for three-dimensional shape measurement[C]//15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Shenzhen, China, 2015:981-990.
[80]Song Z, Jiang H, Lin H, et al. A high dynamic range structured light means for the 3D measurement of specular surface[J]. Optics and Lasers in Engineering, 2017, 95:8-16.
[81]Li D, Kofman J. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement[J]. Optics Express, 2014,22(8):9887-9901.
[82]Lin H, Gao J, Mei Q, et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement[J]. Optics Express, 2016, 24(7): 9887-9901.
[83]Lin H, Gao J, Mei Q, et al. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment[J]. Optics and Lasers in Engineering, 2017,91:206-215.
[84]Li S, Da F, Rao L. Novel adaptive fringe projection technique for high dynamic range 3D shape measurement[C]// International Conference on Optical and Photonics Engineering.Asundi,India,2017: 104491l.
[85]Chen B, Zhang S. High-quality 3D shape measurement using saturated fringe patterns[J]. Optics and Lasers in Engineering, 2017, 87:83-39.
[86]Jiang C, Bell T, Zhang S. High dynamic range real-time 3D shape measurement[J]. 2016, 24(7):7337-7346.
[87]Wang M, Du G, Zhou C, et al. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm[J]. Optics Communications, 2017, 385: 43–53.
[88]Hu Q, Harding K G. Shiny parts measurement using color separation[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 6000:125-132.
[89]Feng S, Chen Q, Zuo C, et al. Fast three-dimensional measurements for dynamic scenes with shiny surfaces [J]. Optics Communications, 2017, 382:18-27.
[90]Liu G, Liu X, Feng Q. 3D shape measurement of objects with high dynamic range of surface reflectivity[J]. Applied Optics, 2011, 50(23):4557-4565.
[91]Salahieh B, Chen Z, Rodriguez J, et al. Multi-polarization fringe projection imaging for high dynamic range objects[J]. Optics Express, 2014, 22(8):10064-71. |