|
|
A general pose testing method of industrial robot |
REN Yu1,2,ZHANG Feng1,GUO Zhi-min1,SONG Zeng-chao1,GONG Ting3 |
1.Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
2.State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
3.Shanghai Aircraft Manufacturing Co. Ltd, Shanghai 200436, China |
|
|
Abstract A general pose testing method of industrial robot is proposed. The basic principle is to use laser tracker to measure the robot’s absolute pose indirectly by measuring 4 reference points fixed on its end, and to compare the real pose with the command pose to test the pose accuracy and repeatability. In this process, the reference points’ coordinates and the robot base coordinate system are calibrated synchronously by multi-pose constrain and a nonlinear calibration algorithm is designed. This testing method is illustrated with a KUKA KR210 R2700 industrial robot with a drilling end effector. The pose accuracy and repeatability of the robot are 0.3 mm and 0.06 mm, which are in accordance with the nominal index. And the coordinate deviation of the tool center point (TCP) from direct measurement is less than 0.015 mm. It is obvious that the testing method is accuracy enough for the requirements of robot pose testing and does not require special mechanical tools. The calibration residual is reduced to 0.35 mm by the nonlinear calibration method. It proves the calibration method has good robustness and can effectively reduce the error caused by inaccurate kinematics model of the robot.
|
Received: 26 October 2017
Published: 05 September 2018
|
|
|
|
|
[1]傅建中. 智能制造装备的发展现状与趋势[J]. 机电工程, 2014, 31(8):959-962.
[2]郑旭.机器人检测与评定[J].中国仪器仪表, 2015, (4):24-26.
[3]陈渌萍, 韩方旭. 国外机器人检测认证发展现状及实例分析[J]. 质量与认证, 2016, (9):34-36.
[4]GB/T 12642—2013工业机器人 性能规范及其试验方法[S].
[5]Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245.
[6]贺惠农, 黄连生. 工业机器人整机性能测试进展[J]. 中国计量大学学报, 2017,28(2):133-140.
[7]尹仕斌. 工业机器人定位误差分级补偿与精度维护方法研究[D]. 天津:天津大学, 2015.
[8]刘玥, 林嘉睿, 刘涛, 等. 白车身视觉检测系统中多类型传感器全局校准技术[J]. 计量学报, 2014, 35(3): 204-209.
[9]焦国太, 阿德·依科拉夫, 余跃庆. 工业机器人位姿误差的计算[J]. 机械科学与技术, 2002, 21(1):35-36.
[10]王一, 赵进进, 金爽,等. 基于锥孔靶标的机器人末端位姿间接测量方法[J]. 中国测试, 2017, 43(3):5-8.
[11]史晓佳, 张福民, 曲兴华,等. KUKA工业机器人位姿测量与在线误差补偿[J]. 机械工程学报, 2017, 53(8):1-7.
[12]Eggert D W, Lorusso A, Fisher R B. Estimating 3-D rigid body transformations: a comparison of four major algorithms[J]. Machine Vision & Applications, 1997, 9(5-6):272-290.
[13]张俐,江春. 基于纵向对称面重合的机身位姿求解方法[J]. 计量学报, 2017, 38(4): 385-390.
[14]王一, 刘常杰, 任永杰,等. 通用机器人视觉检测系统的全局校准技术[J]. 光学精密工程, 2009, 17(12):3028-3033.
[15]王君臣, 王田苗, 杨艳,等. 非线性最优机器人手眼标定[J]. 西安交通大学学报, 2011, 45(9):15-20.
[16]刘玥, 林嘉睿, 刘涛,等. 白车身视觉检测系统中多类型传感器全局校准技术[J]. 计量学报, 2014, 35(3):204-209.
[17]任永杰, 邾继贵, 杨学友,等. 利用激光跟踪仪对机器人进行标定的方法[J]. 机械工程学报, 2007, 43(9):195-200.
[18]张博, 魏振忠, 张广军. 机器人坐标系与激光跟踪仪坐标系的快速转换方法[J]. 仪器仪表学报, 2010, 31(9):1986-1990.
[19]高远, 刘晓平, 王刚,等. 基于对偶四元数的机器人基坐标系标定方法研究[J]. 机电工程, 2017, 34(3):310-314.
[20]Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics & Automation, 1989, 5(3):345-358.
[21]袁培江, 陈冬冬, 王田苗,等. 航空制孔机器人末端执行器高精度制孔方法研究[J]. 航空制造技术, 2016, 59(16):81-86. |
|
|
|