|
|
Fault Diagnosis of Wind Turbine Gearbox Bearing Based on Fractal Dimension and GA-SVM |
SHI Pei-ming,LIANG Kai,ZHAO Na,AN Shu-jun |
School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract For wind turbine gearbox bearing fault diagnosis is studied, and a fault diagnosis method based on the fractal dimension and genetic algorithm support vector machine (GA-SVM) is put forward. Based on the commonly used time domain feature parameters as the support vector machine identification parameters, the fractal dimension feature parameters are introduced to enhance the recognition accuracy of support vector machines. The model of support vector machine parameters optimization based on genetic algorithm is proposed, and the optimal support vector machine parameters are obtained by the optimization of GA. Using the gear box bearing data from a wind farm in Zhangjiakou, Hebei province for fault diagnosis. Experimental results show that the proposed model GA-SVM provided a good solution to the parameter selection problem, as well as the characteristic parameters based on fractal dimension also improve the recognition accuracy of wind turbine bearing failure.
|
Received: 16 April 2016
Published: 29 December 2017
|
|
Corresponding Authors:
pei-ming shi
E-mail: spm@ysu.edu.cn
|
|
|
|
[1]Saravanan N. Gear Box Fault Diagnosis using Hilbert Transform and Study on Classification of Features by Support Vector Machine [J]. International Journal of Hybrid Information Technology, 2014, 7 (4): 69-82.
[2]Zhang L B. Gear Fault Diagnosis Using Empirical Mode Decomposition, Genetic Algorithm and Support Vector Machine [J]. Journal of Vibration Measurement & Diagnosis, 2009, 29 (4): 445-448.
[3]Chen F, Tang B, Chen R. A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm [J]. Measurement, 2013, 46 (1):220-232.
[4]王凯, 张永祥, 李军. 遗传算法和支持向量机在机械故障诊断中的应用研究[J]. 机械强度, 2008, 30(3): 349-353.
[5]陈果, 周伽. 小样本数据的支持向量机回归模型参数及预测区间研究[J]. 计量学报, 2008, 29(1): 92-96.
[6]王凯, 张永祥, 李军. 基于支持向量机的齿轮故障诊断方法研究[J]. 振动与冲击, 2006, 25 (6): 97-99.
[7]孟宗,季艳,谷伟明,等. 基于支持向量机和窗函数的DEMD端点效应抑制方法[J]. 计量学报, 2016, 37(2):180-184.
[8]严刚峰, 黄显核, 谭航,等. 基于遗传算法的振荡器谐振回路的参数选择[J]. 计量学报, 2010, 31(2): 165-169.
[9]南国芳, 王化祥, 王超. 基于BP神经网络和遗传算法的电阻抗图像重建算法[J]. 计量学报, 2003, 24(4): 337-340.
[10]田社平, 韦红雨, 颜德田. 基于遗传算法的lp数据拟合及其应用[J]. 计量学报, 2005, 26(3): 284-288.
[11]卢桂馥, 王勇, 窦易文. 基于遗传算法和最小二乘支持向量机的织物剪切性能预测[J]. 计量学报, 2009, 30(6) :543-546.
[12]于德介, 程军圣, 杨宇. 机械故障诊断的Hilbert-Huang变换方法[M]. 北京:科学出版社, 2007: 137-138. |
|
|
|