|
|
Study on the Calibration Method of the Tip Area Function of the Nanoindenter at Super Low Depth |
WANG Xin-wei1,TAO Xing-fu2,LI Xu2,HE Zhi-yong1,REN Ling-ling2 |
1.Research Institute of Surface Engineering, Taiyuan University of Technology,Taiyuan, Shanxi 030024, China
2.National Institute of Metrology, Beijing 100029, China |
|
|
Abstract Three methods were used to calibrate the tip area function of the nanoindenter at super low indentation depth, they are direct method based on atomic force microscope (AFM), spherical surface fitting method and indirect method based on the measurement results of the reference block of fused silica. It was revealed that tip area function calibrated by the direct method is mostly reliable and precise, of which the geometry morphology of the top end of the nanoindenter tip was truly fitted. Moreover, the corresponding mathematical model was established to analysis the main error of the AFM method, which was the error caused by the curvature radius of the AFM tip. The results show, under the super low indentation depth, the relative error of the tip area function of the nanoindentation is increasing with the decrease of indentation depth, which is mainly due to the curvature radius of the AFM tip. The result of the study is meaningful to the nanoindentation measurement of the thin films, of which super low indentation depth is usually required.
|
Received: 24 November 2015
Published: 11 August 2017
|
|
|
|
|
[1]朱瑛,姚英学,周亮. 纳米压痕技术及其试验研究[J].工具技术,2004,38(8):13-16.
[2]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research,1992, 7(6):1564-1583.
[3]韩高荣, 王建勋, 杜丕一, 等. 纳米复合薄膜的制备及其应用研究[J]. 材料科学与工程, 1999, 17(4):1-6.
[4]Herrmann K, Jennett N M, Wegener W, et al. Progress in determination of the area function of indenters used for nanoindentation[J]. Thin Solid Films, 2000, 377-378: 394-400.
[5]邓墨林, 高思田, 卢明臻, 等. 纳米力学测量系统的载荷与位移溯源校准方法研究[J]. 计量学报, 2012,33(4): 289-293.
[6]Shimamoto A, Tanaka K, Akiyma Y, et al. Nanoindentation of glass with a tip-truncated Berkovich indenter[J]. Philosohical Magazine A,1996, 74(5):1097-1105.
[7]黎正伟, 陶兴付, 树学峰, 等. 纳米压痕仪的压头面积函数校准方法的比较研究[J]. 计量学报, 2015, 36(4):403-407.
[8]Jiao Y, Scheffer T E. Accurate height and volume measurements on soft samples with the atomic force microscope[J]. Langmuir, 2004, 20(23):10038-10045.
[9]Barone A C, Salerno M, Patra N, et al. Calibration issues for nanoindentation experiments: Direct atomic force microscopy measureents and indirect methods[J]. Microscopy Research and Technique, 2010, 73(10):996-1004.
[10]张泰华. 微/纳米力学测试技术及其应用[M]. 北京:机械工业出版社, 2005:21.
[11]ISO 14577-1:2002. Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 1:Test method [S].
[12]龚江宏, 赵喆, 吴建军, 等. 陶瓷材料Vickers硬度的压痕尺寸效应[J]. 硅酸盐学报, 1999, 27(6):693-700.
[13]Rester M, Mota C, Pippan R. Microstructural investigation of the volume beneath nanoindentations in copper[J]. Acta Materialia,2007, 55(19):6427-6435.
[14]Jager I L.Surface free energy-a possible source of error in nanohardness[J]. Surface Science, 2004, 565(2-3):173-179.
[15]杨序纲, 杨潇. 原子力显微术及其应用[M]. 北京:化学工业出版社, 2012:44.
[16]Takagi S, Usuda T, Kongkavitool R. Nanoscale Verification of Hardness Indenters by Atomic Force Microscopy[J]. Journal of Material Testing Research Association of Japan, 2007, 52(3):169-175. |
|
|
|