|
|
The Fault Diagnosis for Rotating Machinery Based on BSS and AR Spectrum Estimation |
MENG Zong1,2,LIANG Zhi1,3 |
1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;
2. Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Qinhuangdao, Hebei 066004, China;
3. Guangxi Special Equipment Supervision and Inspection Institute, Nanning, Guangxi 530219, Chin |
|
|
Abstract The accurate AR model can reveal the changing state characteristics inherent in the signal, however the AR model is sensitive to the changes in the state of the system, and the multiple of dynamic source signal coupling is bound to affect the estimated results. The method of blind source separation is reconstruct mechanical vibration source signals. Then the non-stationary fault signal is decomposed into several stationary signals which suit to establish AR model. Finally, the AR model of stationary intrinsic mode function is constructed to extract the characteristics of fault vibration signal. The results of simulation and experiment are presented to verify the theory analysis.
|
|
|
|
|
[1]杨宇, 杨丽湘, 程军圣. 基于LMD和AR模型的转子系统故障诊断方法[J]. 湖南大学学报, 2010, 37(9), 24-28.
[2]孟宗,顾海燕,刘利晖,等. 基于EMD与AR谱的轧机主传动系统故障诊断研究[J]. 计量学报, 2011, 32(4): 338- 342.
[3]崔新春, 贺洁, 秦小麟. 基于盲源分离的多重音频数据库水印算法[J]. 电子学报, 2012, 40(1): 78-83.
[4]林秋华, 党杰, 殷福亮. 盲源分离图像加密的相关运算解密法[J]. 通信学报, 2008, 29(1): 109-114.
[5]罗志增, 曹铭. 基于最大信噪比盲源分离的脑电信号伪迹滤波算法[J]. 电子学报, 2011, 39(12): 2926-2931.
[6]周晓峰, 杨世锡, 甘春标. 一种旋转机械振动信号的盲源分离消噪方法[J]. 振动、测试与诊断, 2012, 32(5): 714-717.
[7]雷衍斌, 李瞬酩, 门秀花, 等. 基于自相关降噪的混叠转子振动信号分离[J]. 振动与冲击, 2011, 30(1): 218-222.
[8]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal of London Series A, 1998, 454(1971): 903-995.
[9]Cardoso J F, Souloumiac A. An efficient technique for blind separation of complex sources[C]//Proc IEEE SP Workshop on Higher-Order Stat, USA, Lake Tahoe,1993.
[10]Bonacci D, Mailhes C. Imprving subband spectral estimation using modified AR model[J].Signal Processing,2007, 87(5): 937-949.
[11]Subasi A. Selection of optimal AR spectral estimation method for EEG signals using Cramer-Rao bound[J]. Computers in Biology and Medicine, 2007, 37(2): 183-194.
[12]王志刚, 李友荣. 小波分析-AR谱及其工程应用[J]. 振动与冲击, 2001, 20(1): 85-87. |
|
|
|