2 |
ELBOUCHIKHI E, ZIA M F, BENBOUZID M, et al. Overview of signal processing and machine learning for smart grid condition monitoring[J]. Electronics, 2021, 10(21): 1-40.
|
4 |
李盼, 娄钊瑜, 马康, 等. 一种自适应S变换在电能质量特征提取中的应用[J]. 中国电机工程学报, 2021, 41(22): 7660-7668. LI P, LOU Z Y, MA K, et al. Application of Adaptive S-transform in Power Quality Feature Extraction[J]. Proceedings of the CSEE, 2021, 41(22): 7660-7668.
|
6 |
KUMAR R, SAXENA A, KUMAR R, et al. A comprehensive overview on modified versions of stockwell transform for power quality monitoring[J]. IEEE Access, 2022,10(9): 91963-91975.
|
10 |
曹梦舟, 张艳. 基于卷积?长短期记忆网络的电能质量扰动分类[J]. 电力系统保护与控制, 2020, 48(2): 86-92. CAO M Z, ZHANG Y. Classification for power quality disturbances based on CNN?LSTM network[J]. Power System Protection and Control, 2020, 48(2): 86-92.
|
12 |
CAI K W, HU T P, CAO W P, et al. Classifying power quality disturbances based on phase space reconstruction and a convolutional neural network[J]. Applied Sciences, 2019, 9(18): 1-15.
|
14 |
SINDI H, NOUR M, RAWA M, et al. A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification[J]. Expert Systems with Applications, 2021, 174(3):1-13.
|
16 |
USMAN A, CHOUDHRY M A. A precision detection technique for power disturbance in electrical system[J]. Electrical Engineering, 2022, 104(2): 781-796.
|
20 |
MACHLEV R, CHACHKES A, BELIKOV J, et al. Open source dataset generator for power quality disturbances with deep?learning reference classifiers[J]. Electric Power Systems Research, 2021, 195(3):1-7.
|
9 |
ZHU Z Q, LEI Y B, QI G Q, et al. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2023, 206(12): 1-24.
|
22 |
MOTLAGH S Z T, FOROUD A A. Power quality disturbances recognition using adaptive chirp mode pursuit and grasshopper optimized support vector machines[J]. Measurement, 2021, 168(11): 1-20.
|
24 |
OLIVIA FLORENCIAS?OLIVEROS, ESPINOSA?GAVIRAM. J., JUAN?JOSÈ GONZÁLEZ?DE?LA ROSA, et al. Real?life Power Quality Sags[EB/OL]. IEEE Dataport, doi: https://dx.doi.org/10.21227/H2K88D.
|
19 |
de OLIVEIRA R A, BOLLEN M H J. Deep learning for power quality[J]. Electric Power Systems Research, 2023, 214(7): 1-12.
|
3 |
张淑清, 张赟, 刘海涛, 等.多重分形去趋势波动分析及改进决策树在电能质量分析中的应用[J].计量学报,2021,42(4):424-431. ZHANG S Q, ZHANG Y, LIU H T, et al. Application in Power Quality Analysis Based on Multifractal Detrended Fluctuation Analysis and lmproved Decision Tree[J]. Acta Metrologica Sinica, 2021, 42(4): 424-431.
|
5 |
伊慧娟, 高云鹏, 朱彦卿, 等. 基于自适应不完全S变换与LOO?KELM算法的复合电能质量扰动识别[J]. 电力自动化设备, 2022, 42(1): 199-205. YI H J, GAO Y P, ZHU Y Q, et al. Recognition of composite power quality disturbance based on improved incomplete S transform and LOO?KELM algorithm[J]. Electric Power Automation Equipment, 2022, 42(1): 199-205.
|
7 |
LI P, Han Z, XIANG W X, et al. A fast adaptive S?transform for complex quality disturbance feature extraction[J]. IEEE Transactions on Industrial Electronics, 2022, 70(5): 5266-5276.
|
8 |
LIANG C B, TENG Z S, LI J M, et al. A Kaiser window?based S?transform for time?frequency analysis of power quality signals[J]. IEEE Transactions on Industrial Informatics, 2021, 18(2): 965-975.
|
13 |
SHUKLA J, PANIGRAHI B K, RAY P K. Power quality disturbances classification based on Gramian angular summation field method and convolutional neural networks[J]. International Transactions on Electrical Energy Systems, 2021, 31(12): 1-16.
|
15 |
ZHU K Z, TENG Z S, QIU W, et al. Complex Disturbances Identification: A Novel PQDs Decomposition and Modeling Method[J]. IEEE Transactions on Industrial Electronics, 2022, 70(6): 6356-6365.
|
17 |
SWARNKAR N K, MAHELA O P, LALWANI M. Multivariable signal processing algorithm for identification of power quality disturbances[J]. Electric Power Systems Research, 2023, 221(3):1-17.
|
18 |
GONZALEZ?ABREU A D, DELGADO?PRIETO M, OSORNIO-RIOS R A, et al. A novel deep learning?based diagnosis method applied to power quality disturbances[J]. Energies, 2021, 14(10): 1-17.
|
23 |
MARKOVSKA M, TASKOVSKI D, KOKOLANSKI Z, et al. Real?time implementation of optimized power quality events classifier[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 3431-3442.
|
1 |
YU Y Q, ZHAO W, LI S S, et al. A two?stage wavelet decomposition method for instantaneous power quality indices estimation considering interharmonics and transient disturbances[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70(1): 1-13.
|
11 |
CUI C C, DUAN Y J, HU H L, et al. Detection and classification of multiple power quality disturbances using stockwell transform and deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(11): 1-12.
|
21 |
LIU Y L, JIN T, MOHAMED M A, et al. A novel three?step classification approach based on time?dependent spectral features for complex power quality disturbances[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70(3): 1-14.
|
25 |
OLIVIA FLORENCIAS?OLIVEROS, ESPINOSA?GAVIRAM J, JUAN?JOSÈ GONZÁLEZ?DE?LA ROSA, et al. Real?life Power Quality Transients[EB/OL]. IEEE Dataport, doi: https://dx.doi.org/10.21227/H2Q30W.
|