|
|
Calibration of Detecting Depth of LCR Wave of Ultrasonic Stress Transducer Based on Slotting Method |
YI Chang1,2,3,YAO Lei2,3,ZHENG Huifeng1,NIU Miao1,2,3,WU Delin2,3,GAO Shenping2,3,YU Xingyan2,3 |
1. College of Metrological Technology and Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Zhejiang Institute of Quality Sciences, Hangzhou, Zhejiang 310018, China
3. Key Laboratory of Acoustics andVibration Applied Measuring Technology, State Administration for Market Regulation, Hangzhou, Zhejiang 310018, China |
|
|
Abstract In order to accurately characterize the detection depth (LCR wave penetration depth) of ultrasonic stress transducers at different frequencies and improve the spatial resolution of stress measurement, a study on LCR wave detection depth calibration of ultrasonic stress transducers based on slotting method is carried out. The slotting calibration method is based on the principle that when the slotting depth exceeds the penetration depth of LCR waves, the propagation of waves will be affected by the slotting. Firstly, a finite element research model for the penetration depth of LCR waves is established by using a physical field of elastic waves with time domain. The generation and propagation process of LCR waves are simulated, and the influence of groove shapes on LCR waves and detection depth are analyzed. By analyzing the two characteristic parameters of sound time difference and amplitude change, it is concluded that rectangular slot is more suitable for the detection depth calibration. Based on this, detection depth calibration experiments are conducted of transducers at frequencies of 2.5, 5, and 7.5MHz. The uncertainty of the experimental results at 2.5MHz is evaluated. The results show that the average value of ten measurements of LCR wave detection depth for a 2.5MHz transducer is 2.85mm, with an error of 0.15mm from the nominal value, and the combined standard uncertainty is 0.29mm. The research results are meaningful for calibrating the detection depth of transducers at different frequencies and improving the spatial resolution of stress measurement, and can provide experimental reference for the empirical formula of LCR wave penetration depth.
|
Received: 21 November 2023
Published: 30 September 2024
|
|
|
|
|
[2] |
靳鑫. 齿轮齿根残余应力的超声无损检测与校准技术[D]. 北京: 北京理工大学, 2015.
|
[1] |
赵翠华. 残余应力超声波测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
[6] |
超声探伤仪换能器声场特性校准规范: JJF 1650-2017 [S].
|
[20] |
华云松, 孙大乐, 范群, 等. 基于临界折射纵波的超声波应力测量方法[J]. 无损检测, 2008, 30(9): 613-616.
|
[3] |
徐春广, 王俊峰, 宋剑锋, 等. 油气管道焊接残余应力超声无损检测与原位调控技术[J]. 石油科学通报, 2016, 1(3): 442-449.
|
[4] |
徐春广, 宋文涛, 李骁, 等. 残余应力的超声波检测与校准[C]//2014年电子机械与微波结构工艺学术会议. 呼和浩特, 2014.
|
|
ZHANG C, WEI Q, LIU S Z, et al. Electromagnetic ultrasonic excitation device for residual stress detection at different depths [J]. Chinese Journal of Electrical Engineering. 2021, 41(8): 2901-2909.
|
[11] |
朱其猛. 临界折射纵波(LCR)应力测试修正方法与机理研究[D]. 成都: 西南交通大学, 2017.
|
[13] |
孙继华, 赵洪贤, 韩晓华, 等. 基于有限元方法的凹槽超声检测[J]. 计测技术, 2009, 29(6): 28-31.
|
[18] |
宋文涛, 徐春广. 超声法的残余应力场无损检测与表征[J]. 机械设计与制造, 2015, (10): 9-12.
|
[19] |
火巧英, 薛海峰, 苟国庆. LCR波测量残余应力修正模型的建立[J]. 电焊机, 2018, 48(3): 275-280.
|
[8] |
无损检测残余应力超声临界折射纵波检测方法: GB/T 32073-2015 [S].
|
[14] |
LIU Y M, LIU E X, CHEN Y L, et al. Study on Propagation Depth of Ultrasonic Longitudinal Critically Refracted (LCR) Wave[J]. Sensors, 2020, 20(19): 5724-5739.
|
[16] |
孙俊博. 基于超声波法的钢结构构件二维应力检测及温度影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
LIU B, DONG S Y. Non-destructive evaluation of laser cladding stress based on critical refractive longitudinal waves [J]. Journal of Welding, 2014, 35(9): 53-56.
|
[23] |
李勇攀, 王寅观, 陈振宇, 等. 临界折射纵波(LCR波)传播机理的研究[J]. 声学技术, 2004, 23 (3): 141-145
|
[24] |
SONG W T, XU C G, PENG Q X, et al. Nondestructive Testing and Characterization of Residual Stress Field Using an Ultrasonic Method[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 365-371.
|
[7] |
张闯, 魏琦, 刘素贞, 等. 用于不同深度残余应力检测的电磁超声激励装置[J]. 中国电机工程学报, 2021, 41(8): 2901-2909.
|
[10] |
米郁. 金属材料不同层深残余应力超声检测方法研究[D]. 北京: 北京理工大学, 2016.
|
[15] |
张葆青, 辛越峰, 陈爽, 等. 超声幅值差法测量螺栓轴向应力研究[J]. 中国测试, 2022, 48(11): 15-21.
|
|
XU C G, LI H X, WANG J F, et al. Ultrasonic transverse and longitudinal wave detection method for residual stress [J]. Journal of Acoustics, 2017, 42(2): 195-204.
|
|
HUA Y S, SUN D L, FAN Q, et al. Ultrasonic stress measurement method based on critical refracted longitudinal waves [J]. Non-destructive testing, 2008, 30(9): 613-616.
|
|
YANG Y, BAO T, WANG Y, et al. Research on the ranging correction method of ultrasonic longitudinal wave transducers for horizontal measurement [J]. Acta Metrologica Sinica, 2021, 42(6): 738-744.
|
[5] |
超声探伤仪换能器校准规范: JJF 1294-2011 [S].
|
|
SUN J H, ZHAO H X, HAN X H, et al. Ultrasonic testing of grooves based on finite element method [J]. Measurement Technology, 2009, 29(6): 28-31.
|
|
HUO Q Y, XUE H F, GOU G Q. Establishment of residual stress correction model for LCR wave measurement [J]. Welding machine, 2018, 48(3): 275-280.
|
[25] |
LU Y R, XU C G, PAN Q X, et al. Research on an Ultrasonic Longitudinal Critically Refracted Wave Detection Method for the Depth Distribution of Stress[J]. Metals, 2022, 12(10): 1602-1619.
|
|
XU C G, WANG J F, SONG J F, et al. Ultrasonic non-destructive testing and in-situ control technology for residual stresses in oil and gas pipeline welding [J]. Petroleum Science Bulletin, 2016, 1(3): 442-449.
|
[12] |
王伟. 复合材料结构的超声应力无损检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
SONG W T, XU C G. Non destructive testing and characterization of residual stress field using ultrasonic method [J]. Mechanical design and manufacturing. 2015, (10): 9-12.
|
|
LI Y P, WANG Y G, CHEN Z Y, et al. Study on mechanism of transmission of LCR waves [J]. Acoustic technology, 2004, 23(3): 141-145
|
[9] |
JAVADI Y, HLOCH S. Employing the LCR Waves to Measure Longitudinal Residual Stresses in Different Depths of a Stainless Steel Welded Plate[J]. Advances in Materials Science&Engineering, 2013, 48(8): 413-420.
|
[17] |
徐春广, 李焕新, 王俊峰, 等. 残余应力的超声横纵波检测方法[J]. 声学学报, 2017, 42(2): 195-204.
|
[22] |
杨予, 包挺, 王毅, 等. 超声纵波换能器用于平测时的测距修正方法研究[J]. 计量学报, 2021, 42(6): 738-744.
|
|
ZHANG B Q, XIN Y F, CHEN S, et al. Research on measuring axial stress of bolts using ultrasonic amplitude difference method [J]. China Measurement & Testing, 2022, 48(11): 15-21.
|
[21] |
刘彬, 董世运. 基于临界折射纵波无损评价激光熔覆层应力[J]. 焊接学报, 2014, 35(9): 53-56.
|
|
|
|