|
|
Bearing Fault Diagnosis Based on Optimized VMD and Envelope Kurtosis |
LIU Feng1,CHEN Xuejun2,ZHANG Lei1,YANG Kang3 |
1. College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
2. Fujian Key Laboratory of New Energy Equipment Testing, Putian University, Putian, Fujian 351100, China
3. College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350116, China |
|
|
Abstract In view of the difficulty in selecting the decomposition layer K and penalty factor α of variational mode decomposition (VMD), a subtraction-average-based optimizer (SABO) is proposed to optimize the parameters. Firstly, the SABO is used to optimize K and α, output the optimal parameter combination, and substitute it into VMD to decompose the original vibration signal into K modal components. Then, the maximum envelope kurtosis is used as the index to extract the component with the largest kurtosis among the K modal components as the optimal component, and the eigenvector sample set is constructed by calculating the relevant time-domain and entropy theory characteristic parameters of the optimal component. Finally, the eigenvector sample set is input into the support vector machine (SVM) with mesh search and 5-fold cross-validation for fault diagnosis. To verify the effectiveness of this method, experiments were conducted using the bearing dataset from Case Western Reserve University. The experimental results show that the classification effect of the method is better, and the accuracy rate is 99.44%. Based on the bearing data set experiments of three different working conditions in Jiangnan University, the final fault diagnosis accuracy rate reaches more than 95%.
|
Received: 31 October 2023
Published: 30 September 2024
|
|
|
|
|
[10] |
张彬桥, 舒勇, 江雨. 基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 [J]. 计算机制造系统, 2024, 30(4): 1408-1421.
|
|
LIU Y, MENG X C, XU T L. The Rolling Bearing Fault Diagnosis Method Based on LMD-SVD and Extreme Learning Machine [J]. Machinery Design & Manufacture, 2021(8): 107-112.
|
[12] |
张超, 陈建军, 郭迅. 基于EMD能量熵和支持向量机的齿轮故障诊断方法 [J]. 振动与冲击, 2010, 29(10): 216-220.
|
[14] |
丁瑞成, 黄友锐, 陈珍萍, 等.LMD和SVM相结合的电机轴承故障诊断研究 [J]. 组合机床与自动化加工技术, 2016(8): 81-84.
|
[17] |
张俊, 张建群, 钟敏, 等. 基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断 [J]. 振动、测试与诊断, 2020, 40(2): 287-296.
|
[3] |
ZHANG S, ZHANG S, WANG B, et al. Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review [J]. IEEE Access, 2020, 8: 29857-29881.
|
[1] |
吴小涛, 杨锰, 袁晓辉, 等. 基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断 [J]. 振动与冲击, 2015, 34(2):38-44.
|
|
WU X T, YANG M, YUAN X H, et al. Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis criterion [J]. Journal of Vibration and Shock, 2015, 34(2): 38-44.
|
[5] |
DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Access, 2014,62(3): 531-544.
|
[8] |
张鹏, 齐波, 张若愚, 等. 基于经验小波变换和梯度提升径向基的变压器油中溶解气体预测方法 [J]. 电网技术, 2021, 45(9): 3745-3754.
|
[15] |
时培明,范雅斐,韩东颖. 一种改进HVD信号特征提取方法及应用研究 [J]. 计量学报, 2022, 43(7): 920-926.
|
[19] |
胡爱军, 马万里, 唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法 [J]. 中国电机工程学报, 2012, 32(11): 106-111.
|
[6] |
张海潮, 吴伟蔚, 郑霞君. 基于经验模态分解法和Hilbert谱的齿轮箱故障诊断 [J]. 机床与液压, 2007, 35(12): 174-176.
|
[7] |
刘洋, 孟祥川, 许同乐. 基于LMD-SVD和极限学习机的滚动轴承故障诊断方法研究 [J]. 机械设计与制造, 2021(8): 107-112.
|
|
XU J, HU J C, QIN C W. et al. Fault diagnosis of high-pressure fuel pump based on parameter optimization VMD and dispersion entropy [J]. Transactions of CSICE, 2023, 41(2): 166-174.
|
[11] |
NEUPANE D, SEOK J. Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review [J]. IEEE Access, 2020, 8: 93155-93178.
|
|
ZHANG C, CHEN J J, GUO X. A gear fault diagnosis method based on EMD energy entropy and SVM [J]. Journal of Vibration and Shock, 2010, 29(10): 216-220.
|
|
JIN J T, XU Z F, LI C, et al. Bearing Fault Diagnosis Based on VMD Energy Entropy and Optimized Support Vector Machine [J]. Acta Metrologica Sinica, 2021, 42(7): 898-905.
|
|
TANG B, CHEN S S, GUO B B, et al.Fault Diagnosis of Rolling Bearings Based on Migration of Characteristic Parameters[J]. Acta Metrologica Sinica, 2022, 43(3): 386-391.
|
|
ZHANG J, ZHANG J Q, ZHONG M, et al. PSO-VMD-MCKD Based Fault Diagnosis for Incipient Damage in Wind Turbine Rolling Bearing [J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(2): 287-296.
|
|
CHEN K J, CUI W C, ZHU L M. Gear Fault Diagnosis Based on Variational Mode Decomposition and Minimum Entropy Deconvolution Approach [J]. Computer Measurement & Control, 2018, 26(3): 54-57.
|
[2] |
LI X, YANG Y, PING W, et al. A bearing fault diagnosis scheme with statistical-enhanced covariance matrix and Riemannian maximum margin flexible convex hull classifier [J]. ISA Transactions, 2021,111: 323-336.
|
[4] |
LEI Y G, HE Z J, ZI Y Y, et al. Fault diagnosis of rotating machinery based on multiple ANFIS combination with Gas[J]. Mechanical Systems and Signal Processing, 2007,21(5): 2280-2294.
|
[9] |
许佳, 胡建村, 秦慈伟, 等. 基于参数优化VMD和散布熵的高压油泵故障诊断 [J]. 内燃机学报, 2023, 41(2): 166-174.
|
|
DING R C, HUANG Y R, CHEN Z P, et al. Research on Motor Bearings Fault Diagnosis Based on LMD and SVM [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(8): 81-84.
|
|
SHI P M, FAN Y F, HAN D Y. Study on an Improved HVD Signal Feature Extraction Method and Its Application[J]. Acta Metrologica Sinica, 2022, 43(7): 920-926.
|
[20] |
陈克坚, 崔伟成, 朱良明. 基于变分模态分解与最小熵解卷积的齿轮故障诊断 [J]. 计算机测量与控制, 2018, 26(3): 54-57.
|
[21] |
CHANG Chih-Chung, LIN Chih-Jen. LIBSVM: A library for support vector machines [J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3): 1-27.
|
|
LI B Q,YANG L H,YANG Y,et al. Rolling bearing intelligent fault diagnosis based on rotated and extended polyhedron cone [J]. Journal of Hunan University(Natural Sciences), 2022, 49(6):55-64.
|
[13] |
金江涛, 许子非, 李春, 等. 基于 VMD 能量熵与优化支持向量机的轴承故障诊断 [J]. 计量学报, 2021, 42(7): 898-905.
|
[18] |
TROJOVSKY P, DEHGHANI M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems [J]. Biomimetics, 2023,8(2): 149.
|
|
ZHANG H C, WU W W, ZHENG J X. Fault Diagnosis in Gearbox Based on Empirical Mode Decomposition and Hilbert Spectrum [J]. Machine Tool & Hydraulics, 2007, 35(12): 174-176.
|
|
ZHANG P, QI B, ZHANG R Y, et al. Dissolved Gas Prediction In Transformer Oil Based on Empirical Wavelet Transform and Gradient Boosting Radial Basis [J]. Power System Technology, 2021, 45(9): 3745-3754.
|
|
HU A J, MA W L, TANG G J. Rolling Bearing Fault Feature Extraction Method Based on Ensemble Empirical Mode Decomposition and Kurtosis Criterion [J]. Proceedings of the CSEE, 2012, 32(11): 106-111.
|
|
ZHANG Q B, SHU Y, JIANG Y. Bearing fault diagnosis based on improved variational mode decomposition and optimized stacked denoising autoencoder [J]. Computer Integrated Manufacturing Systems, 2024, 30(4): 1048-1021.
|
[16] |
唐波,陈慎慎,郭必奔, 等. 基于特征参数迁移的滚动轴承故障诊断[J]. 计量学报, 2022, 43(3): 386-391.
|
[22] |
李宝庆,杨路航,杨宇,等.基于旋转多面体锥的滚动轴承智能故障诊断 [J]. 湖南大学学报(自然科学版),2022,49(6): 55-64.
|
|
|
|