|
|
Characterization of the influence of bubbles on copper particle signal in electromagnetic abrasive detection |
GUO Mingyuan1,2,PANG Xinyu1,2,WANG Shuo3,CUI Shijie4,LÜ Kaibo1,2,LI Feng5 |
1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
2. Shanxi Provincial Key Laboratory of Coal Mine Fully Mechanized Mining Equipment, TUT,
Taiyuan, Shanxi 030024, China
3. Key Laboratory of Modern Design and Rotor Bearing System, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
4. Shanxi Keda Automatic Control Co., Ltd., Taiyuan, Shanxi 030006, China
5. College of Aeronautics and Astronautics, TUT, Jinzhong, Shanxi 030600, China |
|
|
Abstract Three-coil electromagnetic abrasive sensor is widely used in oil online monitoring, and the bubbles in the oil are easy to interfere with the detection of copper particles, and the quantitative analysis of the influence of bubbles in particle detection will help to improve the detection accuracy of electromagnetic abrasive sensors. Based on the magnetic coupling effect in the detection of electromagnetic abrasive particles, the influence characteristics of bubble gap, bubble size, bubble position and number of bubbles on the detection of copper particles were studied, and the electromagnetic abrasive sensor with large diameter channel (38mm) was simulated and tested. The results show that the larger the gap between the bubble and the copper particles, the smaller the signal amplitude of the copper particles, and the influence range is (0.52~10.31)%. The signal amplitude of copper particles also increased when the bubble size increased, and the influence of bubble diameter was 3.07% and 5.47% when the bubble diameter was 20mm and 25mm, respectively. The larger the angle between the center line of the bubble and the copper particle and the center axis of the sensor, the smaller the detection impact, and the influence range is (0.4~5.6)%; The greater the number of bubbles, the greater the disturbance, and the influence degree of single and double bubbles was 5.66% and 8.74%, respectively.
|
Received: 13 December 2023
Published: 30 September 2024
|
|
Fund:National Natural Science Foundation of China;Key R&D projects in Shanxi Province;Shanxi Province Basic Research Program Project |
|
|
|
[1] |
邱丽娟, 宣征南, 张兴芳. 油液在线监测技术研究进展[J]. 传感器与微系统, 2015, 34(4): 4-7.
|
[2] |
傅舰艇, 詹惠琴. 油路磨粒检测方法与电路研究[D]. 成都: 电子科技大学, 2012.
|
[3] |
孙衍山, 杨昊, 佟海滨, 等. 航空发动机滑油磨粒在线监测[J]. 仪器仪表学报, 2017, 38(7): 1561-1569.
|
|
PANG X Y, YAN Z Q. Research status of intelligent oil analysis technology for mechanical equipment[J]. Hydraulics & Pneumatics, 2020 (9): 56-66.
|
[13] |
王立勇, 钟浩, 李乐, 等. 油液磨粒检测传感器线圈间距对输出信号的影响[J]. 润滑与密封, 2020, 45(6): 69-75.
|
|
QIU L J, XUAN Z N, ZHANG X F. Research progress in oil online [J]. Monitoring Technology Transducer and Microsystems, 2015, 34(4): 4-7.
|
|
SUN Y S, YANG H, TONG H B, et al. On-line monitoring of aero-engine lubricating oil abrasive grains[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1561-1569.
|
[4] |
冯帆, 王国东, 舒明辉. 小功率无线电能传输系统谐振线圈设计优化[J]. 电子测量技术, 2017, 40(1): 12-16.
|
[5] |
JIA R, MA B. Magnetic properties of ferromagnetic particles under alternating magnetic fields: Focus on particle detection sensor applications[J]. Sensors, 2018(18): 1-17.
|
|
LIU SH M, LEI B, LI ZH Y, et al. Design and experimental study of coil drive drive coil [J]. Foreign Electronic Measurement Technology, 2011, 30(8): 54-57.
|
|
JIA R, MA B, ZHENG Ch S, et al. A method for improving the sensitivity of inductive abrasive grain online monitoring sensor[J]. Journal of Hunan University (Natural Science), 2018, 45(4): 129-137.
|
[10] |
王占利, 傅骁, 梁春疆, 基于连续小波变换与曲线拟合的油液金属屑末传感信号检测方法[J]. 电子测量与仪器学报, 2021,35(11):32-38.
|
[11] |
赵波, 赵敏, 马宇明, 等. 双/单通道传导电磁干扰噪声盲源分离研究[J]. 计量学报, 2016, 37(5): 535-539.
|
[12] |
张小章, 李砚涛, 何涛. 含有一个气泡时电磁流量计虚电流的三维特性[J]. 计量学报, 2002, 23(3): 195-198.
|
[6] |
刘书蒙, 雷彬, 李治源, 等. 线圈驱动器驱动线圈的设计及试验研究[J]. 国外电子测量技术, 2011, 30(8): 54-57.
|
[7] |
庞新宇, 闫宗庆. 机械设备智能化油液分析技术研究现状[J]. 液压与气动, 2020 (9): 56-66.
|
[8] |
刘洁. 电磁型油液磨粒在线监测传感系统的研究[D]. 新乡: 河南师范大学, 2018.
|
[9] |
贾然, 马彪, 郑长松, 等. 电感式磨粒在线监测传感器灵敏度提高方法[J]. 湖南大学学报(自然科学版), 2018, 45(4): 129-137.
|
|
ZHAO B, ZHAO M, MA Y M, et al. Research on blind source separation of double/single-channel conducted electromagnetic interference noise[J]. Atca Metrologica Sinica, 2016, 37(5): 535-539.
|
|
ZHANG X Z, LI Y T, HE T. Three-dimensional characteristics of virtual current of electromagnetic flowmeter containing a bubble[J]. Acta Metrologica Sinica, 2002, 23(3): 195-198.
|
|
WANG L Y, ZHONG H, LI L, et al. Effect of coil spacing on output signal of oil abrasive detection sensor[J]. Lubrication and Sealing, 2020, 45(6): 69-75.
|
[14] |
张猛. 检测油液中金属磨粒的磁芯式电涡流传感器研究[D]. 天津: 天津工业大学, 2020.
|
|
BA X, WANG J F, ZUO Y B, et al. On-line oil monitoring system based on FPGA[J]. Instrumentation Technology and Sensors, 2015 (6): 103-106.
|
|
FENG F, WANG G D, SHU M H. Design optimization of resonant coil for low power radio energy transmission system[J]. Electronic Measurement Technology, 2017, 40(1): 12-16.
|
|
WANG Z L, FU X, LIANG C J, Sensing signal detection method of oil metal chip based on continuous wavelet transform and curve fitting[J]. Journal of Electronic Measurement and Instrumentation, 2021,35(11):32-38.
|
[16] |
牛泽, 李凯, 白文斌, 等. 电感式油液磨粒传感器系统设计[D]. 太原: 中北大学, 2021.
|
[15] |
把鑫, 王吉芳, 左云波, 等. 基于FPGA的油液在线监测系统[J]. 仪表技术与传感器, 2015 (6): 103-106.
|
|
|
|