|
|
Damage Identification Method of Derrick Steel Structure Based on Time-domain Multi-parameter Information Fusion and Machine Learning Algorithm |
HUANG Yan,HAN Dongying,ZHU Guoqing,LI Yuefeng,LI Kexin |
School of Vehicles and Energy, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract To avoid the safety hazards caused by structural damage during the operation of derrick steel structures, a method of derrick steel structure damage identification based on principal component analysis and random forest algorithm is proposed by combining time-domain multi-parameter information fusion with machine learning algorithms based on the displacement response signal of derrick steel structures. The acceleration response signal of the derrick steel structure under the impact load is extracted using the acceleration sensor, and the displacement response signal is obtained by processing the acceleration response signal, and three time-domain features containing the impulse factor, margin factor and cliffness are extracted; the three features are fused into a new comprehensive time-domain feature using principal component analysis, and most of the information contained in the original signal is retained; the processed data is fed into the random forest algorithm model for derrick steel structure damage identification, the whole process only needs to collect the post-damage signal, not the pre-damage signal. The above damage identification model was used to simulate the finite element model of the derrick steel structure, and the experimental results of the ZJ70 derrick steel structure laboratory model were also analysed. The analysis results show that the above damage identification method can accurately and efficiently determine the single or multiple damage of the derrick steel structure, and the correct rate of judgment is over 90%.
|
Received: 17 November 2022
Published: 23 May 2024
|
|
|
|
|
[3] |
王琦, 雷宇奇, 王贺, 等. 连续管钻井用伸缩式门型井架研制及应用 [J]. 石油机械, 2022, 50(8): 1-8.
|
[1] |
郝山波, 张波, 刘云. 直接分析法在石油钻机用井架整体稳定性分析中的应用 [J]. 机械工程师, 2022(8): 82-84.
|
[4] |
时培明, 张慧超, 伊思颖, 等. 一种改进的自适应多元变分模态分解轴承故障信号特征提取方法 [J]. 计量学报, 2022, 43(10): 1326-1334.
|
[6] |
熊海贝, 李志强. 结构健康监测的研究现状 [J]. 结构工程师, 2006(5): 90-94.
|
[10] |
BREIMAN L. Random Forests [J]. Machine Learning, 2001, 45(1): 5-32, 2001.
|
[11] |
史鹏博, 李蕊, 李铭凯, 等. 基于决策树和聚类算法的智能电表误差估计与故障检测 [J]. 计量学报, 2022, 43(8): 1089-1094.
|
[12] |
朱建新, 吕宝林, 乔松, 等. 基于主成分分析及多维高斯贝叶斯的超声流量计故障智能诊断方法 [J]. 计量学报, 2020, 41(12): 1494-1499.
|
[2] |
罗宾, 杜坚, 张国胜. 石油井架无线应变测试系统的设计 [J]. 电脑知识与技术, 2010, 6(19): 5352-5354.
|
|
SHI P M, ZHANG H C, YI S Y, et al. An improved adaptive multivariate modal decomposition bearing fault signal feature extraction method [J]. Acta Metrologica Sinica, 2022, 43(10): 1326-1334.
|
|
WANG X L, LIU J X, ZHANG R L, et al. Structural damage identification of simply supported girder bridges based on improved D-S evidence theory [J]. Railway Construction, 2022, 62(7): 5-10.
|
[7] |
张斌. 基于模态应变能的钢结构损伤识别研究 [D]. 西安: 西安建筑科技大学, 2012.
|
[9] |
常海涛, 蔡静, 温悦, 等. 一种基于主成分分析的TDLAS高频噪声滤波 [J]. 计量学报, 2022, 43(10): 1285-1290.
|
|
ZHU J X, L B X, QIAO S, et al. An intelligent diagnosis method for ultrasonic flowmeter faults based on principal component analysis and multidimensional Gaussian Bayes [J]. Acta Metrologica Sinica, 2020, 41(12): 1494-1499.
|
|
WANG C H, CAI J H, ZENG J S. Research on rolling bearing fault diagnosis based on empirical modal decomposition and principal component analysis [J]. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
|
|
WANG P, GONG P, FENG D, et al. A soft measurement method for downhole crude oil water content based on random forest algorithm [J]. Acta Metrologica Sinica, 2019, 40(5): 835-841.
|
|
WANG M, YANG J L, WANG X, et al. Identification of mud shale petrographic logs based on random forest algorithm [J]. Earth Science ,48(1): 130-142.
|
[15] |
张翠翠. 基于改进AdaBoost与双反馈极限学习机的故障检测方法在工业过程中的应用研究 [D]. 北京: 北京化工大学, 2020.
|
|
HAO S B, ZHANG B, LIU Y. Application of direct analysis method in the analysis of overall stability of derricks for oil drilling rigs [J]. Mechanical Engineer, 2022(8): 82-84.
|
[5] |
王先龙, 刘建勋, 张戎令, 等. 基于改进D-S证据理论的简支梁桥结构损伤识别 [J]. 铁道建筑, 2022, 62(7): 5-10.
|
|
XIONG H B, LI Z Q. Current status of research on structural health monitoring [J]. Structural Engineer, 2006(5): 90-94.
|
|
SHI P B, LI R, LI M K, et al. Error estimation and fault detection of smart meters based on decision tree and clustering algorithms [J]. Acta Metrologica Sinica, 2022, 43(8): 1089-1094.
|
[13] |
汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究 [J]. 计量学报, 2019, 40(6): 1077-1082.
|
|
LUO B, DU J, ZHANG G S. Design of wireless strain testing system for oil derricks [J]. Computer Knowledge and Technology, 2010, 6(19): 5352-5354.
|
|
WANG Q, LEI Y Q, WANG H, et al. Development and application of telescopic portal derricks for continuous tubular drilling [J]. Petroleum Machinery, 2022, 50(8): 1-8.
|
[8] |
YANG J, ZHANG D D, FRANGI A F, et al. Two-dimensional PCA: A new approach to appearance-based face representation and recognition [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
|
|
CHANG H T, CAI J, WEN Y, et al. A high-frequency noise filtering based on principal component analysis for TDLAS [J]. Acta Metrologica Sinica, 2022, 43(10): 1285-1290.
|
[13] |
王鹏, 龚盼, 冯定, 等. 基于随机森林算法的井下原油含水率软测量方法 [J]. 计量学报, 2019, 40(5): 835-841.
|
[14] |
王民, 杨金路, 王鑫, 等. 基于随机森林算法的泥页岩岩相测井识别 [J]. 地球科学, 48(1): 130-142.
|
|
|
|