|
|
Application of Improved YOLOX in Inshore Ship Inspection |
ZHANG Liguo,ZHAO Jiashi,JIN Mei,ZENG Xin,SHEN Minghao |
School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China |
|
|
Abstract To solve the problems of large changes in target scale and serious environmental interference during nearshore ship detection, an improved anchorless frame detection algorithm of YOLOX is proposed. Firstly, the contextual transformer (CoT) module is introduced in the backbone network to enhance the expression capability and improve the problem of severe environmental interference by dynamically using contextual information. Secondly, SimAM attention is embedded between the feature pyramid and detection head to enrich semantic information and improve small target detection accuracy. Furtherly, CIOU is used to replace the original loss function to improve the convergence speed. Finally, the depth-separable convolution is used to replace the ordinary convolution in the feature pyramid to reduce the number of parameters and improve the detection speed. The experimental results show that on the SeaShips dataset, the improved model improves the accuracy by 6.73%, mAP reaches 96.63%, and detection speed reaches 48.6 frames per second while reducing the number of parameters, which can detect near-shore ships in real time and with high accuracy.
|
Received: 30 January 2023
Published: 22 January 2024
|
|
|
|
|
[19] |
安鹤男, 杨佳洲, 邓武才, 等. 基于YOLOx残差块融合 CoA模块的改进检测网络[J]. 计算机系统应用, 2022, 31(8): 245-251.
|
[1] |
程淑红, 杨镇豪, 王唱. 多通道融合下的手势识别算法研究及船舶虚拟交互平台设计[J]. 计量学报, 2022, 43(7): 856-862.
|
[2] |
郭玲, 于海雁, 周志权. 基于SimAM注意力机制的近岸船舶检测方法[J]. 哈尔滨工业大学学报, 2022, 55 (5): 14-21.
|
[3] |
蔡浩, 杨光伟, 王丹丹, 等. 内河航道电子卡口智能监管系统解决方案[J]. 中国水运, 2020(4): 61-64.
|
|
GUO L, YU H Y, ZHOU S Q. Inshore Ship Detection Method Based on SimAM Attention Mechanism[J]. Journal of Harbin Institute of Technology, 2023, 55(5):14-21.
|
[4] |
SHAO Z F, WANG L G, WANG Z Y, et al. Saliency-aware convolution neural network for ship detection in surveillance video[J]. IEEE Transactions on Cricuits and Systems for Video Technology, 2019, 30(3): 781-794.
|
[6] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017.
|
[8] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//European Conference on Computer Vision. Amsterdam Netherland, 2016.
|
[10] |
DUAN K, BAI S, XIE L, et al. CenterNet: Keypoint triplets for object detection[C]//in Proc. IEEE/CVF Int. Conf. Comput. Vis,(ICCV). Seoul, Korea, 2019, 6569-6578.
|
[11] |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]// The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019, 9626-9635.
|
[14] |
姚婷婷, 张波, 柳晓鸣. 特征增强全卷积网络下的船舶检测[J]. 计算机辅助设计与图形学学报, 2022,34(7): 1028-1036.
|
[15] |
程淑红, 谢文锐, 张典范, 等. 基于多算法融合的跌倒行为识别[J]. 计量学报, 2022. 43(1): 107-113.
|
[16] |
GE Z, LIU S, WANG F, et al. [C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE,2021,2107.08430.
|
[18] |
LI Y, YAO T, PAN Y, et al. Contextual Transformer Networks for Visual Recognition[C]//IEEE Trans Pattern Anal Mach Intell, IEEE. 2023,45(2): 1489-1500.
|
|
CHENG S H, YANG Z H, WANG C. Research on Gesture Recognition Algorithm under Multi-channel Fusion and Design of Ship Virtual Interaction Platform. Acta Metrologica Sinica, 2022, 43(7): 856-862.
|
[9] |
LAW H, DENG J. CornerNet: Detecting objects as paired key points[C]//in Proc. Eur Conf Comput Vis, ECCV. Munich, Germany, 2018, 734-750.
|
[17] |
YI C C, XU B, CHEN J, et al. An Improved YOLOX Model for Detecting Strip Surface Defects[J]. Steel Research International, 2022, 93: 2200505.
|
[22] |
张立国, 蒋轶轩, 田广军. 基于多尺度融合方法的无人机对地车辆目标检测算法研究[J]. 计量学报, 2021, 42(11): 1436-1442.
|
|
CAI H, YANG G W, WANG D D. Intelligent supervision system solution of electronic bayonet in inland waterways[J]. China Water Transport, 2020(4): 61-64.
|
[7] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M, et al. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2020.
|
[13] |
PENG H, TIAN X D. Improved YOLOXs Anchor-Free SAR Image Ship Target Detection[J]. IEEE Access, 2022(10):70001-70015.
|
|
CHENG S H, XIE W R, ZHANG D F, et al. Fall Behavior Recognition Based on Multi-algorithm Fusion [J]. Acta Metrologica Sinica, 2022. 43(1): 107-113.
|
[20] |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: A simple parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th Internarional Conference on Machine Learning. New York,USA, 2021,11863-11874.
|
|
ZHANG L G, JIANG Y X, TIAN G J. Research on Unmanned Aerial Vehicle to Ground Vehicle Target Detection Algorithm Based on Multiscale Fusion Method[J]. Acta Metrologica Sinica, 2021, 42(11): 1436-1442.
|
[5] |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, 2015, 1440-1448.
|
|
YAO T T, ZHANG B, LIU X M. Ship Detection under Feature Enhanced Fully Convolutional Network[J]. Journal of Computer Aided Design and Computer Graphics, 2022. 34(7): 1028-1036.
|
|
LIN Y, CHEN L, WANG G P, et al. Improved YOLOv3 traffic sign recognition algorithm[J]. Science Technology and Engineering, 2022, 22(27): 12030-12037.
|
[12] |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal, Canada, 2021,2778-2788.
|
|
AN H N, YANG J Z, DENG W C, et al. Improved detection network based on YOLOx residual block fusion CoA module[J]. Computer system applications, 2022, 31(8): 245-251.
|
[21] |
林轶, 陈琳, 王国鹏, 等. 改进的YOLOv3交通标志识别算法[J]. 科学技术与工程, 2022, 22(27): 12030-12037.
|
|
|
|