|
|
Research on Hysteresis Nonlinearity Improvement of Piezoelectric Actuator Based on Charge Pump |
ZHANG Lian-sheng1,2,ZHANG Peng-cheng1,2,HAO Shuang1,2,HUANG Qiang-xian1,2,CHENG Rong-jun1,2,LI Hong-li1,2 |
1. School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
2. Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, Anhui 230009, China |
|
|
Abstract Piezoelectric actuator has been widely used in precision positioning, micro/nano measurement fields. However, hysteresis and nonlinear phenomena seriously affect its positioning accuracy and performance. Although the charge driving method can reduce most of the hysteresis, there is still obvious residual hysteresis, especially when the voltage range is large, and the hysteresis of piezoelectric actuator shows an increasing trend. Based on the analysis and calculation of residual hysteresis, a method to improve the residual hysteresis of charge pump driving method is proposed, and the derivation method of correction parameters are studied, to improves the hysteresis nonlinearity of classical charge pump drive. Through experiments, it is found that in the case of a drive voltage range of 0~100V and a drive frequency of 0.1~2Hz, the improved charge pump drive method can further reduce the hysteresis to less than 0.47%, which is about 83% lower, compared with the classical charge pump drive method of hysteresis of 2.79%. The proposed method has good application value in precision measurement and other fields.
|
Received: 20 February 2023
Published: 17 November 2023
|
|
|
|
|
[16] |
张杰. 用于原子力显微镜压电扫描器的新型电荷驱动方法研究与应用 [D]. 合肥:中国科学技术大学, 2015.
|
[5] |
陈贺, 陈晓怀, 王珊, 等.微纳米测量机测头结构的参数设计及分析[J]. 计量学报, 2013, 34(5): 401-405.
|
[17] |
王建红, 林健, 张建华, 等. 压电致动器迟滞特性的多项式拟合建模 [J]. 机床与液压, 2015, 43 (19): 71-74.
|
[18] |
王丽娜.基于干扰观测器的压电陶瓷迟滞补偿控制 [J]. 国外电子测量技术, 2018, 37 (6): 89-93.
|
[2] |
Yang M J, Li C X, Gu G Y, et al. Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified rate-dependent Prandtl-Ishlinskii model [J]. Smart Materials and Structures, 2015, 24 (12): 125006.
|
[4] |
Chen J, Peng G, Hu H, et al.Dynamic hysteresis model and control methodology for force output using piezoelectric actuator driving [J]. IEEE Access, 2020, 8: 205136-205147.
|
[3] |
罗四维, 乐燕芬, 彭洋, 等. 高线性度的二维无耦合纳米压电位移系统设计 [J]. 计量学报, 2021, 42(8): 977-985.
|
[6] |
Ge P, Jouaneh M. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators [J]. Precision engineering, 1997, 20 (2): 99-111.
|
[8] |
Gan J, Zhang X. A review of nonlinear hysteresis modeling and control of piezoelectric actuators [J]. AIP Advances, 2019, 9 (4): 040702.
|
[10] |
Saleem A, Mesbah M, Shafiq M. Feedback-feedforward control for high-speed trajectory tracking of an amplified piezoelectric actuator [J]. Smart Materials and Structures, 2021, 30 (2): 025033.
|
[11] |
Choi G S, Lim Y A, Choi G H. Tracking position control of piezoelectric actuators for periodic reference inputs [J]. Mechatronics, 2002, 12 (5): 669-684.
|
[15] |
Huang L, Ma Y T, Feng Z H, et al. Switched capacitor charge pump reduces hysteresis of piezoelectric actuators over a large frequency range [J]. Review of Scientific Instruments, 2010, 81 (9): 094701.
|
|
Wang L N. Piezoelectric ceramic hysteresis compensation control based on interference observer [J]. Foreign Electronic Measurement Technology, 2018,37 (6): 89-93.
|
[1] |
Qin Y, Tian Y, Zhang D, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications [J]. IEEE/ASME Transactions on Mechatronics, 2012, 18 (3): 981-989.
|
|
Luo S W, Le Y F, Peng Y, et al.Design of a High Linearity Two-Dimensional Uncoupled Nanometer Piezoelectric Displacement System. Acta Metrologica Sinica, 2021, 42(8): 977-985.
|
[9] |
Yang C, Li C, Xia F, et al. Charge controller with decoupled and self-compensating configurations for linear operation of piezoelectric actuators in a wide bandwidth [J]. IEEE Transactions on Industrial Electronics, 2018, 66 (7): 5392-5402.
|
[12] |
Rakotondrabe M, Ivan I A, Khadraoui S, et al. Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control [J]. IEEE/ASME Transactions on Mechatronics, 2014, 20 (2): 519-531.
|
|
Wang J H, Lin J, Zhang J H, et al. Modeling of Hysteresis Characteristics of Piezoelectric Actuator with Polynomial Fitting [J]. Machine Tool & Hydraulics, 2015, 43 (19): 71-74.
|
[19] |
崔玉国,孙宝元,董维杰,等.压电陶瓷执行器迟滞与非线性成因分析 [J]. 光学精密工程, 2003, 11 (3): 270-275.
|
|
Chen H, Chen X H, Wang S, et al.The Parameters Design and Analysis of Micro-nano CMM Probe[J]. Acta Metrologica Sinica, 2013, 34(5): 401-405.
|
[7] |
Tan U X, Latt W T, Widjaja F, et al. Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller [J]. Sensors and Actuators A: Physical, 2009, 150 (1): 116-123.
|
[14] |
Yang C, Li C, Zhao J. A nonlinear charge controller with tunable precision for highly linear operation of piezoelectric stack actuators [J]. IEEE Transactions on Industrial Electronics, 2017, 64 (11): 8618-8625.
|
[13] |
Ronkanen P, Kallio P, Vilkko M, et al. Displacement control of piezoelectric actuators using current and voltage [J]. IEEE/ASME Transactions on Mechatronics, 2010, 16 (1): 160-166.
|
|
Cui Y G, Sun B Y, Dong W J, et al. Causes of hysteresis and Nonlinearity of piezoelectric Ceramic Actuator [J]. Optics and Precision Engineering, 2003, 11 (3): 270-275.
|
|
|
|