|
|
The Evaluation of Roundness by Improved Zone Searching Algorithm |
KONG Yu-qiang1,WANG Shi-qiang1,2,ZHU Yong-gang1 |
1.School of Mechanical Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064,China
2.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China |
|
|
Abstract Addressing the issue of numerous ineffective search points in traditional zone search algorithms for roundness error evaluation, an improved zone search (IZS) algorithm is proposed, which incorporates the characteristics of Archimedean spirals to enhance the search area, streamline the number of search points, and boost computational efficiency. Mathematical models for roundness error evaluation based on the minimum zone circle (MZC), maximum inscribed circle (MCC), and minimum circumscribed circle (MIC) are presented, along with a comprehensive description of the algorithm's implementation process.Lastly through experimental comparisons with genetic algorithm (GA), simplex algorithm (SA), and particle swarm optimization (PSO), it has been revealed that IZS algorithm demonstrates superior computational speed and enhanced accuracy. And in comparison to traditional search algorithms (RZS, PZS), the IZS algorithm requires searching only 78points to achieve the same level of accuracy, which is 1.2826μm. Applied in practice, it will improve the detection efficiency of roundness errors in rotary components.
|
Received: 21 July 2022
Published: 17 July 2023
|
|
|
|
|
[14] |
王生怀, 王杰, 徐风华. 基于正多边形搜索算法的圆度误差评定[J]. 工具技术, 2018, 52(10): 135-138.
|
[12] |
雷贤卿, 李济顺, 薛玉君, 等. 基于极坐标测量的圆度误差评定算法[J]. 工程图报, 2010, 31(2): 188-191.
|
[11] |
黄富贵, 郑育. 基于区域搜索的圆度误差评定方法[J]. 计量学报, 2008, 29(2): 117-119.
|
[16] |
岳龙龙, 黄强先, 梅腱, 等. 基于最小包容区域法的圆度误差评定方法[J]. 机械工程学报, 2020, 56(4): 42-48.
|
[2] |
张琳娜. 精度设计与质量控制基础[M]. 北京: 中国计量出版社, 1997.
|
[5] |
崔长彩, 黄富贵, 张认成, 等. 粒子群优化算法及其在圆度误差评定中的应用[J]. 计量学报, 2006, 27(4): 317-320.
|
[4] |
申翠香, 张晓宇. 基于量子遗传算法的圆度误差测量研究[J]. 计量学报, 2018, 39(2): 242-245.
|
[3] |
张汛, 徐晓刚, 喻虎. 遗传算法在圆度误差评定中的应用[J]. 测控技术, 2014, 33(8): 33-36.
|
[10] |
雷贤卿, 畅为航, 薛玉君, 等. 圆度误差的网格搜索算法[J], 仪器仪表学报, 2008, 29(11): 2324-2329.
|
[15] |
盛东良, 詹剑良, 朱丹. 一种基于快速搜索圆心的圆度新算法[J]. 计量学报, 2022, 43(6): 725-729.
|
[6] |
Kanada T, Suzuki S. Evaluation of Minimum Zone Flatness by Means of Nonlinear Optimization Techniques and Its Verification[J]. Precision Engineering, 1993, 15(2): 93-99.
|
[7] |
岳武陵, 吴勇. 基于仿增量算法的圆度误差快速准确评定[J]. 机械工程学报, 2008, 44(1): 87-91.
|
[8] |
Lai H Y, Jywe W Y, Chen C K, et al. Precision Modeling of Form Errors for Cylindricity Evaluation Using Genetic Algorithms[J]. Precision Engineering, 2000, 24(4): 310-319.
|
[9] |
Nara A, Singh D, Srinivas D S. A Novel Iterative-based Field Search Technique for Roundness Evaluation[J]. North American Manufacturing Research Conference, 2021, 53: 268-275.
|
|
Lei X Q, Chang W H, Xue Y J, et al. Evaluation of Roundness Error Based on Mesh Search Algorithm[J]. Chinese Journal of Scientific Instrument, 2008, 29(11):2324-2329.
|
|
Huang F G, Zheng Y J. A method for Roundness Error Evaluation Based on Area Hunting[J]. Acta Metrologica Sinica, 2008, 29(2): 117-119.
|
|
Lei X Q, Li J S, Xue Y J, et al. Evaluating Algorithm of Roundness Error Based on Polar-Coordinate Measuring[J]. Journal of Engineering Graphics, 2010, 31(2): 188-191.
|
[13] |
龚玉玲, 徐晓栋, 苏召宁, 等. 基于自适应区域搜索算法的圆度误差评定[J]. 制造业自动化, 2017, 39(3): 56-59.
|
[1] |
GB/T 1958-2017产品几何量技术规范(GPS)形状和位置公差检测规定[S]. 2017.
|
|
Zhang X, Xu X G, Yu H. Application of Genetic Algorithm in Roundness Error Evaluation[J]. Measurement & Control Technology, 2014, 33(8): 33-36.
|
|
Shen C X, Zhang X Y. Detecting Roundness Error Based on Quantum Genetic Algorith[J]. Acta Metrologica Sinica, 2018, 39(2): 242-245.
|
|
Cui C C, Huang F G, Zhang R C, et al. Roundness Error Evaluation Based on the Particle Swarm Optimization[J]. Acta Metrologica Sinica, 2006, 27(4): 317-320.
|
|
Yue W L, Wu Y. Fast and Accurate Evaluation of Roundness Error Based on Simulation Incremental Algorithm[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 87-91.
|
|
Gong Y L, Xu X D, Su Z N, et al. Roundness Error Evaluation Based on the Algorithm of Self-adaptive Region Searching[J]. Manufacturing Automation, 2017, 39(3): 56-59.
|
|
Wang S H, Wang J, Xu F H. Roundness Error Evaluation Based on Equilateral Polygon Search Algorithm[J]. Tool Engineering, 2018, 52(10): 135-138.
|
[17] |
Wang S Q, Zheng P, Kong Y Q, et al. A Novel Method for Roundness Error Based on Searching the Center of the Circle[J]. Measurement Science and Technology, 2022, 33(9): 095008.
|
|
Sheng D L, Zhan J L, Zhu D. A New Algorithm for Circularity Based on Fast Searching the Center[J]. Acta Metrologica Sinica, 2022, 43(6): 725-729.
|
|
Yue L L, Huang Q G, Mei J, et al. Roundness Error Evaluation Method Based on Minimum Containment Zone Method[J]. Journal of mechanical engineering, 2020, 56(4): 42-48.
|
[18] |
Xu F H, Wang S H, Wang J. A Novel Evaluation Method of Roundness Error Based on Equilateral Polygon Search Algorithm[J]. International Journal of Wireless and Mobile Computing, 2019, 16(3): 253-258.
|
|
|
|