|
|
Development of Key Parameter Metrology and Detection Equipment for Q-switched Nd:YAG Laser Therapy Apparatus |
WU Fu-bao1,2,HU Zhi-xiong2,DUAN Liang-cheng2,ZHONG Kai1,XU Bao-zhong1, LIU Wen-li2,YAO Jian-quan1 |
1.College of Precision Instrument and Optoelectronics Engineering,Tianjin University, Tianjin 300072, China
2.Center for Medical Metrology, National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In view of the difficulty in traceability of the key parameters of pulsed laser therapy apparatus, a metrology and detection equipment for the key parameters of Q-switched Nd:YAG laser therapy apparatus based on LabVIEW and USB bus technology was designed and developed. The equipment can measure and detect the key parameters of the treatment laser and the aiming laser and generate the detection report automatically. The main function modules of the system are:pulse width, energy, repetition frequency, spot size and beam dispersion angle, wavelength and aiming laser power measurement. In the spot measurement module, the feedback mechanism into the traditional "knife-edge method" was introduced and the automatic measurement was realized, which can adapt to the laser of different pulse frequencies. Furthermore, the traceability method was further studied, and the uncertainty of spot size measurement reached 3.2%. The uncertainty of other parameters of the laser therapy apparatus measurement and detection equipment was also analyzed, including laser wavelength, pulse width, energy, repetition frequency, and aiming laser power, the uncertainties are 0.6 nm, 4.0%, 3.2%, 0.12% and 3.4%, respectively.
|
Received: 20 April 2021
Published: 21 February 2023
|
|
|
|
|
[1] |
Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[Invited][J]. Biomedical Optics Express, 2017, 8(3). 1638-1664.
|
[4] |
邱海霞, 李步洪, 马辉,等. 我国激光技术医疗应用和产业发展战略研究[J]. 中国工程科学, 2020, 22(3): 14-20.
|
[5] |
JJG581—2016 医用激光源[S]. 2016.
|
[6] |
方谊筠. 医用激光源与计量检定[J]. 中国计量, 2009(5): 105-107.
|
[8] |
YY1300—2016 激光治疗设备脉冲掺钕钇铝石榴石激光治疗机[S]. 2016.
|
[10] |
袁媛, 李绍稳, 汪伟伟, 等. 基于LabVIEW的虚拟仪器技术研究与应用[J]. 农业网络信息, 2005 (4): 6-10.
|
|
Xu H. Correct selection of measurement and testing equipment to improve the level of enterprise measurement and testing[J]. Industrial measurement, 2001(S1):4.
|
|
Liu Y L. Design of LabVIEW temperaturemonitoring system based on USB[J]. Computer Knowledge and Technology, 2020, 16(13): 7-10.
|
|
Qiu H X, Li B H, Ma H,et al. Research on medical application and industrial development strategy of laser technology in China[J]. Engineering Sciences, 2020, 22(3): 14-20.
|
[13] |
刘玉玲. 基于USB的Labview温度监测系统设计[J]. 电脑知识与技术, 2020, 16(13): 7-10.
|
[14] |
黄学文, 周敬泉. 虚拟仪器技术的现状与前景[J]. 电测与仪表, 2004, 41(10): 5-8.
|
[15] |
曾伟, 师彦荣. 虚拟仪器技术的发展及应用[J]. 中国西部科技, 2010, 9(30): 27-28.
|
|
He W, Feng T Y. Design of Laser Detection Device Tester Based on Virtual Instrument[J]. Instrument Technology and Sensor, 2019(4): 33-35.
|
[19] |
吴思圻, 杨世金, 胡志雄, 等. 生命体征模拟仪计量校准方法的研究[J]. 计量学报, 2020, 41(12): 1583-1589.
|
[20] |
付晓宇, 胡志雄, 葛春风, 等. 眼科光学相干层析成像设备分辨率关键参数的小型化检测装置研制[J]. 计量学报, 2017, 38(6): 690-692.
|
[21] |
丁罕, 王海娟, 樊翔. 激光光束远场发散角测量方法[J]. 中国医疗器械信息, 2013, 19(6): 42-44.
|
|
Ding X,Fu Y Z, Li F, et al. The Method for Measuring the Positioning Accuracy of Confocal Raman Microscope[J]. Acta Metrologica Sinica, 2021, 42(10): 1271-1274.
|
[3] |
Sun Y, You S, Tu H, et al. Intraoperative visualization of the tumor microenvironment and quantificationof extracellular vesicles by label-free nonlinear imaging[J]. Science Advances, 2018, 4(12): 1-10.
|
[12] |
许红. 正确选择计量检测设备提高企业计量检测水平[J]. 工业计量, 2001(S1):4.
|
[18] |
贺伟, 冯天源. 基于虚拟仪器的激光探测装置测试仪的设计[J]. 仪表技术与传感器, 2019(4): 33-35.
|
[23] |
定翔, 付彦哲,李飞, 等. 拉曼光谱仪成像定位精度检测方法[J]. 计量学报, 2021, 42(10): 1271-1274.
|
[9] |
YY1475—2016 激光治疗设备Q开关掺钕钇铝石榴石激光治疗机[S]. 2016.
|
|
Zeng W, Shi Y R. Development and application of virtual instrument technology[J]. Science and Technology of West China, 2010, 9(30): 27-28.
|
|
Ding H, Wang H J, Fan X. Measurement Method of Far Field Divergence Angle of Laser Beam[J]. China Medical Instrument Information, 2013, 19(6): 42-44.
|
[2] |
Li L, Peng H, Jun H S, et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 2018, 9(1). 2352.
|
[7] |
YY0846—2011 激光治疗设备 掺钬钇铝石榴石激光治疗机[S]. 2011.
|
[11] |
黄大星, 蒋天弟, 王斌. 虚拟仪器技术在现代测控系统中的应用[J]. 农机化研究, 2006(8): 184-185.
|
|
Huang X W, Zhou J Q. Current Situation and Prospect of Virtual Instrument Technology[J]. Electrical Measurement & Instrumentation, 2004, 41(10): 5-8.
|
[17] |
Xin M F, Yi Z, Qi B S, et al. Experimental study on measuring the beam waist of Gaussian laser beam using a 90/10 Knife-edge Method[J]. Laser and Infrared, 2018, 38(6), 541-543.
|
|
Fu X Y, Hu Z X, Ge C F, et al. Optical coherence tomography based on optical coherence tomography[J]. Acta Metrologica Sinica, 2017, 38(6): 690-692.
|
|
Wang Q Q, Liu J, Peng Z, et al. Laser Beam Divergence Angle Measurement System Based on LabVIEW[J]. Chinese Journal of Lasers, 2012, 39(11): 122-125.
|
[16] |
刘彻. 刀口法测量激光光斑尺寸大小的实验[J]. 通讯世界, 2017(10): 240-241.
|
|
Wu S Q, Yang S J, Hu Z X, et al. Research on the measurement and calibration method of vital sign simulator[J]. Acta Metrologica Sinica, 2020, 41(12): 1583-1589.
|
[22] |
王茜蒨, 刘佳, 彭中, 等. 基于LabView的激光束发散角测量系统[J]. 中国激光, 2012, 39(11): 122-125.
|
|
|
|