|
|
Density Measurement of Pure Water by Hydrostatic Weighing |
XU Hao-ming1,2,WANG Jin-tao2,LIU Xiang2,ZHANG Jing-yue2,LUO Zhi-yong2,GU Ying-zi2,WANG Si-xian2,SUN Bin1 |
1. China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology,Beijing 100029, China |
|
|
Abstract The principle of density measurement by hydrostatic weighing method and the characteristic formula of pure water density in volume measurement were analyzed, and the calculation formula of liquid density measured by solid standard of known density was deduced. The weighing method assigned a value to the solid density standard silicon sphere, and the relative measurement uncertainty was 3×10-6 (k=2). Finally, using a high-precision liquid density measuring device at 20℃, the density of the solid standard (silicon sphere) was transferred to the density of pure water by static weighing method. Compared with the Tanaka model, the En value was 0.059, and the comparison results were equivalent. The experimental results not only verify the high-precision liquid density measurement device, but also verify the theoretical value of the 20℃ pure water density model.
|
Received: 10 November 2021
Published: 13 January 2023
|
|
|
|
|
|
Luo Z Y, Wang J T, Liu X, et al. Avogadro Constant Determination and Kilogram Redefinition[J]. Acta Metrologica Sinica, 2018, 39(3):377-380.
|
[3] |
马爱文, 曲兴华. SI基本单位量子化重新定义及其意义[J]. 计量学报, 2020, 41(2): 129-133.
|
[4] |
罗志勇. 测长方法创新及固体密度基准的建立[R]. 北京:中国计量科学研究院,2016.
|
[6] |
王金涛. 固体材料密度测量方法的研究[R]. 北京,中国计量科学研究院, 2013.
|
[11] |
顾英姿. 基于液体静力称量法的密度测量研究[D]. 北京:中国计量科学研究院, 2007.
|
[15] |
张培满, 王金涛, 刘翔, 等. 基于液体静力称量法的玻璃浮计校准结果的不确定度分析[J].计量技术, 2016(1):19-23.
|
[20] |
李兴华. 密度与浓度测量[M]. 北京:中国计量出版社, 1990.
|
[22] |
俱岩飞, 王俊彪, 常崇义, 等. 考虑非正定相关性的测量不确定度蒙特卡洛评定方法[J]. 计量学报, 2022, 43(6):830-836.
|
[2] |
罗志勇, 王金涛, 刘翔, 等. 阿伏加德罗常数测量与千克重新定义[J]. 计量学报, 2018, 39(3):377-380.
|
[7] |
Fujii K. A new density standard replaced from water[J]. National Institute of Advanced Industrial Science and Technology, 2008, 1(3):201-211.
|
[10] |
彭程, 王健. 用于量值传递的高精度单晶硅球质量测量研究[J]. 计量学报, 2021, 42(3):265-270.
|
[13] |
Tanaka M, Girard G, Davis R, A. et al. Recommended table for the density of water between 0℃ and 40℃ based on recent experimental reports[J]. Metrologia, 2001, 38(4):301-309.
|
[16] |
钟家栋,孙斌,赵玉晓,等. 基于静力称重法的微小容量光学检测系统标定[J]. 计量学报, 2020, 41(8):960-964.
|
[18] |
刘子勇, 罗志勇. 固体和液体密度统一基准的研究[J]. 现代计量测试, 2001(1):49-52.
|
|
Han Y T. SI Base Units and Time Measurement[J]. Acta Metrologica Sinica, 2022, 43(1): 1-6.
|
[5] |
罗志勇, 杨丽峰, 顾英姿, 等. 固体密度基准研究[J]. 科学通报, 2007, 52(12):1382-1386.
|
[9] |
马鑫钰. 基于固体密度标准的玻璃浮计校准系统[D]. 杭州:中国计量大学, 2019.
|
[14] |
佟林. 高精度液体密度测量方法研究和标准密度液体制备[R]. 北京:中国计量科学研究院, 2017.
|
[17] |
Zhang L L, Kuramoto N, Kurokawa A, et al. XPS study of silicon spheres as a density standard[J]. Surface and Interface Analysis, 2019, 51(4):127.
|
|
Ju Y F,Wang J B,Chang C Y, et al. Monte Carlo Method for the Measurement Uncertainty Evaluation Considering Non-positive Definite Correlation. Acta Metrologica Sinica, 2022, 43(6):830-836.
|
[1] |
韩雨桐. SI基本单位与时间计量[J]. 计量学报, 2022, 43(1):1-6.
|
|
Ma A W, Qu X H. The Quantized Redefinition of the SI and its Signification[J]. Acta Metrologica Sinica, 2020, 41(2): 129-133.
|
[8] |
顾英姿, 陈朝晖, 许常红, 等. 液体静力称量法液体密度测量及其不确定度评定[J]. 计量技术, 2006(6):8-11.
|
[12] |
夏玉明, 徐志强. 纯水密度测量及其研究[J].计量技术, 2007(5):29-32.
|
|
Zhong J D, Sun B, Zhao Y X, et al. Calibration Method for Optical Measurement of Ultra-Micro Liquid Volume[J]. Acta Metrologica Sinica, 2020, 41(8): 960-964.
|
[21] |
Batista E, Paton R. The selection of water property formulae for volume and flow calibration[J]. Metrologia, 2008, 44(6):127.
|
|
Peng C, Wang J. Research on High Accuracy Mass Measurement of Silicon Sphere in the Dissemination of Mass Unit[J]. Acta Metrologica Sinica, 2021, 42(3):265-270.
|
[19] |
柯瑞刚. 容量与密度计量[M]. 北京:机械工业出版社, 1990.
|
|
|
|