|
|
Evaluation of the Uncertainty for the Measurement of Surface Roughness by Low-noise Probing System |
SHI Zhou-miao1,3,ZHANG Shu2,3,SHI Yu-shu2,PI Lei2,HU Jia-cheng1 |
1. China Jiliang University, Hangzhou, Zhejiang 310018, China
2.National Institute of Metrology,Beijing 100029, China
3. Shenzhen Institute Technology Innovation, NIM, Shenzhen, Guangdong 518132, China |
|
|
Abstract In order to improve the measurement capability of the existing stylus surface roughness measuring instrument, from the perspective of reducing the noise level of the instrument, a low noise stylus surface topography probing system has been developed.The probing system uses sample scanning, and uses a high precision capacitive sensor to measure the vertical movement of the stylus, thereby reflecting the true micro-nano topography of the measured surface, and achieves low noise level under nanometer-scale measurement.Ra is measured by the instrument standard sample and the uncertainty is evaluated.The results show that the uncertainty is 2.8 nm (k=2) for the Type C3 standard sample.
|
Received: 21 April 2021
Published: 19 September 2022
|
|
|
|
|
[1]施玉书, 张树, 连笑怡, 等. 毫米级纳米几何特征尺寸计量标准装置多自由度激光干涉计量系统 [J]. 计量学报, 2020, 41 (7): 769-774.
Shi Y S, Zhang S, Lian X Y, et al. Multi-DOF Laser Interferometry System for Metrological Standard Device for Nano-geometrical Characteristic Size in Millimeter Range [J]. Acta Metrologica Sinica, 2020, 41 (7): 769-774.
[2]Thomsen-Schmidt P. Characterization of a traceable profiler instrument for areal roughness measurement [J]. Measurement Science and Technology, 2011, 22 (9): 094019.
[3]Leach R K, Flack D R, Hughes E B, et al. Development of a new traceable areal surface texture measuring instrument [J]. Wear, 2009, 266 (5-6): 552-554.
[4]张树, 施玉书, 高思田, 等.计量型白光干涉显微镜干涉图像处理技术 [J]. 计量学报, 2017, 38 (z1): 80-84.
Zhang S, Shi Y S, Gao S T, et al. Interference Images Processing in Metrological White-light Interferometry Microscope [J]. Acta Metrologica Sinica, 2017,38 (z1): 80-84.
[5]Tang B, Zhou L, Xiong Z, et al. A programmable broadband low frequency active vibration isolation system for atom interferometry [J]. Review of Scientific Instruments, 2014, 85 (9): 093109.
[6]Slocum A H. Precision machine design [M]. Michigan:Society of Manufacturing Engineers, 1992.
[7] JJF 1105—2018 触针式表面粗糙度测量仪校准规范 [S]. 2018.
[8]Rothe H, Duparre A, Jakobs S. Generic detrending of surface profiles [J]. Optical Engineering, 1994, 33 (9): 3023-3030.
[9]刘俭, 谷康, 李梦周.扫描探针显微镜下微纳结构深度测量的校准方法 [J]. 计量学报, 2019, 40 (4): 549-556.
Liu J, Gu K, Li M Z, et al. Calibration Method for Depth Measurement of Nano/microstructure in Scanning Probe Microscopy [J]. Acta Metrologica Sinica, 2019, 40 (4): 549-556.
[10] JJF 1059.1—2012 测量不确定度评定与表示 [S]. 2012.
[11]Sherrington I, Smith E H. Design and performance assessment of a Kelvin clamp for use in relocation analysis of surface topography [J]. Precision engineering, 1993, 15 (2): 77-85.
[12]Song J F, Vorburger T V. Stylus flight in surface profiling [J]. Journal of Manufacturing Science and Engineering, 1994, 68: 161-161.
[13]Hii K F, Vallance R R, Grejda R D, et al. Error motion of a kinematic spindle [J]. Precision engineering, 2004, 28 (2): 204-217.
[14]全国产品尺寸和几何技术规范标准化技术委员会. GB/T 19067.1—2003 产品几何量技术规范 (GPS) 表面结构 轮廓法 测量标准第1部分: 实物测量标准[S]. 2003.
[15]程银宝, 陈晓怀, 王中宇, 等.CMM形状测量任务的不确定度分析与评定 [J]. 计量学报, 2020, 41 (2): 134-138.
Chen Y B, Chen X H, Wang Z Y, et al. Uncertainty Analysis and Evaluation of Form Measurement Task for CMM [J]. Acta Metrologica Sinica, 2020, 41 (2): 134-138.
[16]孙艳玲, 常素萍.接触式表面轮廓测量的非线性误差分析与补偿 [J]. 计量学报, 2016, 37 (6): 563-566.
Sun Y L, Chang S P. Analysis and Compensation of the Nonlinear Error Based on Contact Surface Profile Measurement [J]. Acta Metrologica Sinica, 2016, 37 (6): 563-566.
[17]曾春阳. 触针轮廓仪传感器校准及误差补偿 [D]. 武汉: 华中科技大学, 2017.
[18]卜祥鹏,张树,皮磊,等. 表面粗糙度国际比对自动测量系统关键技术研究[J]. 计量学报, 2022, 43 (7): 844-850.
Bu X P, Zhang S, Pi L, et al. Research on the Key Technology of the Automatic Measurement System for Surface Roughness International Comparison[J]. Acta Metrologica Sinica, 2022, 43 (7): 844-850.
[19] GB/T 1031—2009 产品几何技术规范 (GPS) 表面结构 轮廓法 表面粗糙度参数及其数值 [S]. 2009. |
|
|
|