|
|
Calculation of Conductor Temperature and Ampacity of Directly Buried Cable Based on Electromagnetic Thermal Multi Field Coupling |
WANG Yan-nan,LI Zheng,YANG Peng-fei,LIU Wei |
Beijing Zhixin Microelectronics Co. Ltd., Beijing 100089, China |
|
|
Abstract In order to study the temperature and current carrying capacity of underground cable conductors and design reasonable cable laying methods, combined with the knowledge of heat transfer and using finite element analysis, a calculation model of electromagnetic thermal coupling for buried power cables is established, and the current carrying capacity of the model is calculated. The calculation result is compared and verified with the calculation result based on the IEC 60287 standard. The influence of cable laying depth, interphase distance, thermal backfill and phase sequence changes on the temperature and current carrying capacity of power cable conductors is discussed, and the degree of influence of different factors on the temperature and current carrying capacity of cable conductors is analyzed through multiple linear regression. The research results show that the cable laying method greatly affects the cable conductor temperature and ampacity. The greater the laying depth, the smaller the interphase distance, the smaller the thermal conductivity of the thermal backfill, the higher the cable conductor temperature, the lower the ampacity. The thermal conductivity of backfill has the most significant effect on the temperature and ampacity of the cable conductor, and the phase sequence has the smallest effect. Therefore, in the direct buried cable laying project, thermal backfill with high thermal conductivity should be used to enhance the heat dissipation effect of the cable, thereby ensuring the safe and economic operation of the cable.
|
Received: 07 April 2021
Published: 18 July 2022
|
|
|
|
|
[1]周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望 [J]. 高电压技术,2014, 40 (9): 2593-2612.
Zhou Y X, Zhao J K, Liu R, et al. Key Technical Analysis and Prospect of High Voltage and Extra-high Voltage Power Cable [J]. High Voltage Engineering, 2014, 40 (9): 2593-2612.
[2]孟遂民, 陈思凡, 杨鸽子, 等. 隧道电力电缆三角形排列相间距研究 [J]. 中国科技论文, 2018, 13 (23): 64-68.
Meng S M, Chen S F, Yang G Z, et al. Study on the triangular arrangement phase spacing of tunnel power cable [J]. China Sciencepaper, 2018, 13 (23): 64-68.
[3]Rerak M,
Oco'n P. Thermal analysis of underground power cable system [J]. Journal of Thermal Science, 2017, 26 (5): 465-471.
[4]IEC 60287-1 Calculation of the current rating-current rating equations (100% load factor) and calculation of losses[S]. 2001.
[5]IEC 60287-2 Calculation of the current rating-thermal resistance[S].2001.
[6]IEC 60287-3 Calculation of the current rating-sections on operating conditions[S]. 1999.
[7]Bates C, Malmedal K, Cain D. Cable ampacity calculations: A comparison of methods [J]. IEEE Transactions on Industry Applications, 2015, 52 (1): 112-118.
[8]陈国华, 王贤灿, 官文彤. 厦门电力进岛自容式充油海底电缆供油系统设计 [J]. 电网与清洁能源, 2013, 29 (10): 53-58.
Chen G H, Wang X C, Guan W T. Design of the Oil Supply System of Self-Contained Oil-Filling Submarine Cable in Electricity for Xiamen Islands Project [J]. Advances of Power System & Hydroelectric Engineering, 2013, 29 (10): 53-58.
[9]赵建华, 袁宏永, 范维澄, 等. 基于表面温度场的电缆线芯温度在线诊断研究 [J]. 中国电机工程学报,1999, 19(11): 52-54,68.
Zhao J H, Yuan J Y, Fan W C, et al. Surface temperature field based online diagnoses study for electric cables conductor temperature [J]. Proceedings of The Csee, 1999, 19(11): 52-54.
[10]梁永春, 李彦明, 柴进爱, 等. 地下电缆群稳态温度场和载流量计算新方法 [J]. 电工技术学报, 2007, 22(8): 185-190.
Liang Y C, Li Y M, Chai J A, et al. A new method to calculate the steady-state temperature field and ampacity of underground cable system [J]. Transactions of China Electrotechnical Society. 2007, 22 (8): 185-190.
[11]姜小兵. XLPE电缆线芯温度计算方法研究 [J]. 华北电力技术, 2014, (4): 8-11.
Jiang X B. Calculation method of XLPE cable conductor temperature [J]. North China Electric Power, 2014, (4): 8-11.
[12]刘正刚, 杜广生, 刘丽萍. 动量式气体流量计内部流场特性与测量性能研究 [J]. 计量学报, 2019, 40 (1): 124-129.
Liu Z G, Du G S, Liu L P. Study on Internal Flow Field and Measurement Performance of Momentum Gas Flowmeter [J]. Acta Metrologica Sinica, 2019, 40 (1): 124-129.
[13]李红雷,李颖,姚周飞, 等. 公路隧道中敷设电力电缆的温度场仿真研究 [J]. 计算机仿真, 2019,36 (2): 59-62.
Li H L, Li Y, Yao Z F, et al. Simulation of Thermal Field of Power Cable Installed in Traffic Tunnel[J]. Computer Simulation, 2019, 36(2): 59-62.
[14]唐科, 文武, 阮江军, 等. 基于有限元法的单芯电缆温度场仿真研究 [J]. 武汉大学学报 (工学版), 2018, 51(9): 811-816.
Tang K, Wen W, Ruan J J, et al. Temperature field simulation of single core cable based on FEM [J]. Engineering Journal of Wuhan University, 2018,51 (9): 811-816.
[15]张智辉, 唐兴佳, 陈泽铭, 等. 排管电缆群布置方式的联合优化方法研究 [J]. 电测与仪表,2020,57 (15): 8-13.
Zhang Z H, Tang X J, Chen Z M, et al. Research on joint optimization method for layout of pipeline cables [J]. Electrical Measurement & Instrumentation, 2020,57 (15): 8-13.
[16]李萌, 牛胜锁, 刘玉芹, 等. 基于多场耦合模型的海底电缆载流量和温度场计算研究 [J]. 电测与仪表,2018, 55(8): 12-16,23.
Li M, Niu S S, Liu Y Q, et al. Calculation of temperature distribution and ampacity for submarine cables based on multi-physics field coupling model [J]. Electrical Measurement & Instrumentation, 2018,55 (8): 12-16,23.
[17]牛海清, 郭少锋, 余佳. 复杂敷设输电电缆线路载流量瓶颈的时空特性 [J]. 南方电网技术, 2018, 12(5): 44-50.
Niu H Q, Guo S F, Yu J. Time-Space Characteristics of Current-Carrying Capacity Bottleneck of Complicatedly Laid Transmission Cable Line [J]. Southern Power System Technology, 2018, 12(5): 44-50.
[18]焦阳. 电力电缆温度场仿真及在线监测系统研究[D]. 重庆: 重庆大学,2016.
[19]杨宁. 高压电力电缆输送能力的计算研究[D]. 吉林: 东北电力大学,2019.
[20]刘刚, 王鹏宇, 周凡, 等. 电力电缆暂态热路模型中绝缘层的优化 [J]. 高电压技术,2018, 44(5): 1549-1556.
Liu G, Wang P Y, Zhou F, et al. Optimization on the Insulating Layer of Transient Thermal Circuit Model of Power Cable [J]. High Voltage Engineering, 2018,44 (5): 1549-1556.
[21]刘喆, 张福元, 宋超凡, 等. 测温元件加工及安装对喷嘴标准装置校准数据的影响分析 [J]. 计量学报,2019, 40(6A): 145-149.
Liu Z, Zhang F Y, Song C F, et al. Analysis of the Influence of the Size and Installation for Temperature Measuring Elements on the Calibration of CFV Nozzle Standard [J]. Acta Metrologica Sinica, 2019, 40 (6A): 145-149.
[22]付荣荣,李朋,刘冲,等. 基于线性判别分析的决策融合脑电意识动态分类[J].计量学报, 2022, 43(5): 688-695.
Fu R R,Li P,Liu C,et al. Dynamic Motor Imagery Classification with Decision Fusion Based on Linear Discriminant Analysis. Acta Metrologica Sinica, 2022, 43(5): 688-695. |
|
|
|