|
|
Low-power and Mono Gas Ultrasonic Flowmeter Based on Dynamic Variable Threshold |
JIANG Zhen,XU Ke-jun,MA Jie,ZHANG Lun,XU Hao-ran |
School of Electrical and Automation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China |
|
|
Abstract To overcome the shortcomings of pressure loss and the need for regular calibration with gas turbine flowmeter, a mono-channel gas ultrasonic flowmeter with high-pressure resistance and low power consumption is developed.In order to solve the poor quality of the echo signal caused by the impedance mismatch of the transducer, the features of the echo signal are analyzed.A digital signal processing method based on dynamic variable threshold and zero-crossing detection is proposed to accurately locate the feature point of the echo signal.A low-power gas ultrasonic flow transmitter with STM32 as the core has been developed, and a new excitation method is designed,which can not only prevent the two-way outputs of the MOSFET circuit from being turned on at the same time, but also save the excitation power consumption.The combination of pulse cumulative upload and optimal pulse frequency division reduces the pulse upload error.The gas flow calibration experiment results show that: the developed low-power mono gas ultrasonic flowmeter meets the requirements of the indicators of level 1 accuracy, and the range ratio is 1:21.
|
Received: 08 July 2020
Published: 23 March 2022
|
|
|
|
|
[1]Svedin N, Stemme E, Stemme G. A static turbine flow meter with a micromachined silicon torque sensor [J]. Journal of Microelectromechanical Systems, 2004, 12 (6): 937-946.
[2]Zhang K, Su Y F, Ding J Q, et al. Design and Analysis of a Gas Flowmeter Using Diamagnetic Levitation [J]. IEEE Sensors Journal, 2018, 18 (17): 6978-6985.
[3]王玉梅, 张绍革, 高强. 商业用户燃气流量计的选择 [J]. 煤气与热力, 2009, 29 (1): 44-47.
Wang Y M, Zhang S G, Gao Q. The choice of com-mercial gas flow meters [J]. Gas and Heat, 2009, 29 (1): 44-47.
[4]朱建新,吕宝林,乔松,等. 基于主成分分析及多维高斯贝叶斯的超声流量计故障智能诊断方法 [J]. 计量学报, 2020, 41 (12): 1494-1499.
Zhu J X, Lv B L, Qiao S, et al. Application of Primary Component Analysis and Multivariate Gaussian Bayesian Method on Intelligent Failure Diagnosis of Ultrasonic Flowmeter[J]. Acta Metrologica Sinica, 2020, 41 (12): 1494-1499.
[4]孟涛, 王池, 邢超. 基于主成分分析的流量装置比对传递标准稳定性研究 [J]. 计量学报, 2019, 40 (5): 823-828.
Meng T, Wang C, Xing C. Research on the stability of the comparison transfer standard of flow devices based on principal component analysis [J]. Acta Metrologica Sin-ica, 2019, 40 (5): 823-828.
[5]Jacobson S. New Developments in Ultrasonic Gas Analysis and Flowmetering[C]//IEEE. Ultrasonics Symposium, 2008. Ius, 2009: 508-516.
[6]Hu L, Qin L H, Mao K, et al. Optimization of Neural Network by Genetic Algorithm for Flowrate Determination in Multipath Ultrasonic Gas Flowmeter [J]. Sensors Journal, IEEE, 2016, 16 (5): 1158-1167.
[7]赵伟国,卜勤超,姚海滨, 等. 基于双声道的低压超声气体流量计数据融合方法[J]. 计量学报, 2021, 42 (7): 873-878.
Zhao W G, Bu Q C, Yao H B, et al. A Data Fusion Method of Double-channel Ultrasonic Flowmeter Application in Low Pressure Gas[J]. Acta Metrologica Sinica, 2021, 42 (7): 873-878.
[7]詹志杰, 王函滔, 沈文新. 射流式家用燃气表结构与计量特性探讨 [J]. 计量学报, 2014, 35 (1): 154-157.
Zhan Z J, Wang H T, Shen W X. Discussion on the stru-cture and measurement characteristics of jettype hous-ehold gas meters [J]. Acta Metrologica Sinica, 2014, 35 (1): 154-157.
[8]爱知时计股份有限公司. AS-W系列气体超声波流量计[EB/OL]. https://www. aichitokei. net/products/ultrasonicflow-meters-for-fuel-gas-as-w-series/, 2016-03-15-2020-05-27
[9]马超, 张建义, 袁嫣红. 超低功耗、高精度矿用超声波气体流量计系统研究 [J]. 机电工程, 2015, 32 (10): 1278-1283.
Ma C, Zhang J Y, Yuan Y H. Research on ultra-low power consumption and high-precision ultrasonic gas flow meter system for mines [J]. Mechanical and Electrical Engineering, 2015, 32 (10): 1278-1283.
[10]傅新, 方泽华, 毛凯,等. 应用于低功耗超声波流量计的超声波信号幅值检测方法: 201410336014.0 [P]. 2014-11-26.
[11]曾令源, 严小强, 夏美玲. 基于时差法的超声波燃气表设计与研究 [J]. 电子质量, 2018, (2): 63-67.
Zeng L Y, Yan X Q, Xia M L. Design and research of ultrasonic gas meter based on time difference method [J]. Electronic Quality, 2018, (2): 63-67.
[12]Zhu W J, Xu K J, Fang M, et al. Variable Ratio Threshold and Zero-crossing Detection Based Signal Processing Method for Ultrasonic Gas Flowmeter [J]. Measurement, 2017, 103: 343-352.
[13]方敏, 徐科军, 汪伟,等. 基于FPGA和DSP的气体超声流量计驱动和数字信号处理系统 [J]. 计量学报, 2017, 38 (2): 200-204.
Fang M, Xu K J, Wang W, et al. Gas ultrasonic flow-meter drive and digital signal processing system based on FPGA and DSP [J]. Acta Metrologica Sinica, 2017, 38 (02): 200-204.
[14]穆立彬, 徐科军, 刘博,等. 基于可变阈值和过零检测的四声道气体超声波流量变送器 [J]. 计量学报, 2019, 40 (2): 92-97.
Mu L B, Xu K J, Liu B, et al. Four-channel gas ultrasonic flow transmitter based on variable threshold and zerocrossing detection [J]. Acta Metrologica Sinica, 2019, 40 (2): 92-97.
[15]Fang M, Xu K J, Zhu W J, et al. Energy Transfer Model and Its Applications of Ultrasonic Gas Flow-meter Under Static and Dynamic Flow Rates [J]. Review of Scientific Instruments, 2016, 87 (1): 015107.
[16]田颖, 陈培红, 聂圣芳, 等. 功率MOSFET驱动保护电路设计与应用 [J]. 电力电子技术, 2005, 39 (1): 73-74+80.
Tian Y, Chen P H, Nie S F, et al. Design and application of power MOSFET drive protection circuit [J]. Power Electronics, 2005, 39 (1): 73-74+80.
[17]王峰. 脉冲输出式流量计体积修正仪的研发[D]. 杭州: 浙江大学, 2010.
[18]JJG1030—2007 超声流量计[S]. 2007. |
|
|
|