|
|
Review on the Cavity Ring-down Spectroscopy for Greenhouse Gas Monitoring |
MA Lu-yao1,2,3,LIN Jun2,3,ZHANG Liang2,3,LIN Hong2,3,FENG Xiao-juan2,XU Hong1,REN Ge2,3,ZHANG Jin-tao2,3 |
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Division of Thermophysics and Process Measurement, National Institute of Metrology, Beijing 100029, China
3. Zhengzhou Institute of Metrology, Zhengzhou, Henan 450001, China |
|
|
Abstract The impact of global climate change to human life has been widespread concern in the world. Greenhouse gas is one of the key factors that affect the climate change. Therefore, to limit and reduce the emissions of greenhouse gases has become an important issue in the world. Most of the greenhouse gas concentration are in10-6 (part per million) level. Because of its low concentration and large difference in gas molecular structure, the traditional method is difficult to obtain higher precision in concentration monitoring. Cavity ring-down spectroscopy (CRDS) is one of the key techniques to solve this problem. In this paper, the research progress of greenhouse gases monitoring by cavity ring-down spectroscopy is reviewed, especially the frequency-stabilized CRDS which now can achieve the best signal-to-noise ratio and detection limit. The future development of cavity ring-down spectroscopy is prospected.
|
Received: 23 February 2021
Published: 23 February 2022
|
|
|
|
|
[1]胡鹤鸣, 王池, 张金涛. 城市区域碳排放测量反演研究国际进展[J]. 计量学报, 2017, 38(1): 7-12.
Hu H M, Wang C, Zhang J T. International Research Overview of Inversion Approach of Carbon Emission Measurement in Urban Area[J]. Acta Metrologica Sinica, 2017, 38(1): 7-12.
[2]Ren G, Zhang L, Lin H, et al. Study on Monitoring and Measurement of greenhouse Gas and Air Pollutant emissions [J]. Metrology, 2020, (5): 79-84.
[3]周鑫,周泽义.光腔衰荡光谱法测定气体中微痕量水不确定度评估[J]. 计量学报,2012,33(2): 178-180.
Zhou X, Zhou Z Y. The Uncertainty Evaluation of Determining the Moisture in Gases by the Method of Cavity Ring Down Spectroscopy[J]. Acta Metrologica Sinica, 2012, 33(2): 178-180.
[4]潘金明, 林鸿, 冯晓娟, 等. CO的第二泛频(3←0)跃迁谱线线形强度测量研究[J]. 计量学报, 2020, 41(12): 1565-1569.
Pan J M, Lin H, Feng X J, et al. Investigation on the Line Intensity Measurement of the Second Overtone (3←0) Band of CO[J]. Acta Metrologica Sinica, 2020, 41(12): 1565-1569.
[5]Demtrder W. Laser Spectroscopy[M]. New York: Springer, 2008.
[6]Hodges J T, Lisak D. Frequency-stabilized Cavity Ring-down Spectrometer for High-sensitivity Measurements of Water Vapor Concentration[J]. Applied Physics, 2006, 85: 375-382.
[7]赵欣月, 林鸿, 杨雷, 等. 1.6微米附近氮气展宽的一氧化碳分子线形的研究[J]. 计量学报, 2017, 38(1): 13-18.
Zhao X Y, Lin H, Yang L, et al. Investigation on Line Shape for N2-broadened CO Near 1.6μm[J]. Acta Metrologica Sinica, 2017, 38(1): 13-18.
[8]邹冰妍, 林鸿, 张亮, 等. 点排放源中二氧化碳浓度的测量研究[J]. 计量学报, 2019, 40(2): 246-251.
Zou B Y, Lin H, Zhang L, et al. Investigation on CO2 Concentration Measurement for Point Emission Source[J]. Acta Metrologica Sinica, 2019, 40(2): 246-251.
[9]Berden G, Peeters R, Meijer G. Cavity Ring-down Spectroscopy: Experimental Schemes and Applications[J]. International Reviews in Physical Chemistry, 2000, 19: 565-607.
[10]马若梦, 林鸿, 张亮, 等. 基于多次反射直接吸收精确测量二氧化碳浓度的研究[J]. 计量学报, 2020, 41(4): 425-429.
Ma R M, Lin H, Zhang L, et al. Measurement of Carbon Dioxide Concentration Based on Multi-pass Absorption Technology[J]. Acta Metrologica Sinica, 2020, 41(4): 425-429.
[11]Hodges J T, Layer H P, Miller W W, et al. Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy[J]. Review of scientific instruments, 2004, 75: 849-863.
[12]Kassi S, Campargue A. Cavity ring down spectroscopy with 5×10-13cm-1 sensitivity[J]. The Journal of chemical physics, 2012, 137: 234201.
[13]Burkart J, Kassi S. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy[J]. Applied Physics B, 2015, 119(1): 97-109.
[14]Herbelin J, McKay J, Kwok M, et al. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method[J]. Applied Optics, 1980, 19: 144-147.
[15]Anderson D Z, Frisch J C, Masser C S. Mirror reflectometer based on optical cavity decay time[J]. Applied Optics, 1984, 23: 1238-1245.
[16]OKeefe A, Deacon D A. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59: 2544-2551.
[17]Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 1966, 5: 1550-1567.
[18]Yan W B, Dudek J, Lehmann K, et al. Trace gas detection with CW cavity ring-down laser absorption spectroscopy[C]//2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 2000. 2000.
[19]Engeln R, Meijer G. A Fourier transform cavity ring down spectrometer[J]. Review of scientific instruments, 1996, 67: 2708-2713.
[20]Romanini D, Lehmann K K. Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta[J]. The Journal of chemical physics, 1993, 99(9): 6287-6301.
[21]Lehmann K K, Romanini D. The superposition principle and cavity ring-down spectroscopy[J]. The Journal of chemical physics, 1996, 105(23): 10263-10277.
[22]Romanini D, Kachanov A, Sadeghi N, et al. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 264: 316-322.
[23]Romanini D, Kachanov A, Stoeckel F. Diode laser cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 270: 538-545.
[24]Totschnig G, Baer D S, Wang J, et al. Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species[J]. Applied optics, 2000, 39: 2009-2016.
[25]Cormier J G, Ciurylo R, Drummond J R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum[J]. The Journal of chemical physics, 2002, 116: 1030-1034.
[26]Paldus B, Harb C, Spence T, et al. Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers[J]. Optics letters, 2000, 25: 666-668.
[27]Kosterev A A, Malinovsky A L, Tittel F K, et al. Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser[J]. Applied optics, 2001, 40: 5522-5529.
[28]Funke H H, Grissom B L, McGrew C E, et al. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Review of scientific instruments, 2003, 74(9): 3909-3933.
[29]Paldus B, Harb C, Spence T, et al. Cavity-locked ring-down spectroscopy[J]. Journal of applied physics, 1998, 83: 3991-3997.
[30]Levenson M, Paldus B, Spence T, et al. Optical heterodyne detection in cavity ring-down spectroscopy[J]. Chemical physics letters, 1998, 290: 335-340.
[31]Bucher C R, Lehmann K K, Plusquellic D F, et al. Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy[J]. Applied optics, 2000, 39(18): 3154-3164.
[32]Hodges J T, Layer H P, Miller W W, et al. Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy[J]. Review of Scientific Instruments, 2004, 75(4): 849-863.
[33]Hodges J T, Lisak D. Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration[J]. Applied Physics B, 2006, 85(2-3): 375-382.
[34]Courtois J, Bielska K, Hodges J T. Differential cavity ring-down spectroscopy[J]. JOSA B, 2013, 30(6): 1486-1495.
[35]Hashiguchi K, Lisak D, Cygan A, et al. Wavelength-meter controlled cavity ring-down spectroscopy: high-sensitivity detection of trace moisture in N2 at sub-ppb levels[J]. Sensors and Actuators A: Physical, 2016, 241: 152-160.
[36]Polyansky O L, Bielska K, Ghysels M, et al. High-accuracy CO2 line intensities determined from theory and experiment[J]. Physical review letters, 2015, 114(24): 243001.
[37]杨雷, 林鸿, 冯晓娟, 等. 光腔衰荡光谱仪测量甲烷2ν_3带R1支光谱线型参数[J]. 光谱学与光谱分析, 2018, 38(S1): 299-300.
Yang L, Lin H, Feng X Y, et al. The spectral linetype parameters of methane 2v_3 band R1 branch were measured by optical cavity ring-down spectrometer [J]. Spectroscopy and Spectral Analysis, 2018,38 (S1): 299-300.
[38]Yang L, Lin H, Plimmer M D, et al. Lineshape test on overlapped transitions (R9F1, R9F2) of the 2v3 band of 12CH4 by frequency-stabilized cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 210: 82-90.
[39]Yang L, Lin H, Feng X J, et al. Temperature-scanning saturation cavity ring-down spectrometry for Doppler-free spectroscopy[J]. Optics express, 2018, 26(8): 10203-10210.
[40]Yang L, Lin H, Feng X J, et al. Saturation cavity ring-down spectrometry using a dynamical relaxation model[J]. Optics express, 2019, 27(3): 1769-1776.
[41]Lin H, Yang L, Feng X J, et al. Discovery of New Lines in the R 9 Multiplet of the 2 v 3 Band of 12CH4[J]. Physical review letters, 2019, 122(1): 013002.
[42]Abe H, Hashiguchi K, Lisak D. Dual-laser cavity ring-down spectroscopy for real-time, long-term measurement of trace moisture in gas[J]. Measurement Science and Technology, 2018, 30(1): 015002.
[43]Reed Z, Hodges J. Frequency Comb phase-locked Cavity Ringdown Spectroscopy[C]// CLEO: Science and Innovations. 2019.
[44]李超, 陈华才, 林弋戈, 等. 应用于边带调制PDH激光稳频的信号源设计[J]. 计量学报, 2018, 39(3): 401-404.
Li C, Chen H C, Lin Y G, et al. Design of Signal Generator Applied on Sideband Modulation Pound-Drever-Hall Laser Frequency Stabilization[J]. Acta Metrologica Sinica, 2018, 39(3): 401-404.
[45]Fleisher A J, Adkins E M, Reed Z D, et al. Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity[J]. Physical Review Letters, 2019, 123(44):043001.
[46]Tomberg T, Hieta T, Vainio M, et al. Cavity-enhanced cantilever-enhanced photo-acoustic spectroscopy[J]. Analyst, 2019, 144(7): 2291-2296.
[47]Zhao G, Bailey D M, Fleisher A J, et al. Doppler-free two-photon cavity ring-down spectroscopy of a nitrous oxide (N2O) vibrational overtone transition[J]. Physical Review A, 2020, 101(6): 062509.
[48]Ye J, Ma L S, Hall J L. Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy[J]. JOSA B, 1998, 15(1): 6-15.
[49]Burkart J, Romanini D, Kassi S. Optical feedback frequency stabilized cavity ring-down spectroscopy[J]. Optics letters, 2014, 39(16): 4695-4698.
[50]Lin H, Reed Z D, Sironneau V T, et al. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 11-20.
[51]Cygan A, Lisak D, Wójtewicz S, et al. High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters[J]. Physical Review A, 2012, 85(2): 022508.
[52]Gerecht E, Douglass K O, Plusquellic D F. Chirped-pulse terahertz spectroscopy for broadband trace gas sensing[J]. Optics express, 2011, 19(9): 8973-8984.
[53]Brown G G, Dian B C, Douglass K O, et al. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation[J]. Review of Scientific Instruments, 2008, 79(5): 053103.
[54]Mondelain D, Mikhailenko S N, Karlovets E V, et al. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921cm-1[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 206-212.
[55]Truong G W, Douglass K O, Maxwell S E, et al. Frequency-agile, rapid scanning spectroscopy[J]. Nature photonics, 2013, 7(7): 532-534. |
|
|
|