|
|
Influence Analysis of Working Condition Carameters of Single Screen Multipoint Air-flow Temperature Sensor in Field Calibration |
WANG Yu-fang1,DONG Su-yan2,ZHAO Jian1,LIU Chong-yang3 |
1. AVIC Beijing Changcheng Institute of Metrology & Measurement, Beijing 100095, China
2. Northwestern Polytechnical University, Xian, Shaanxi 710072, China
3. China Aviation Development Sichuan Gas Turbine Research Institute, Mianyang, Sichuan 621000, China |
|
|
Abstract By means of numerical simulation, the single screen multi-point air flow temperature sensor in the combustion chamber test environment is simulated, the temperature field and flow field environment are changed, and the influence laws of different working conditions parameters such as total inlet temperature, total inlet pressure and Mach number on the measurement results of the single screen multi-point air flow temperature sensor are analyzed and verified by experiments. The numerical simulation results show that under the combustion chamber test environment, the temperature measurement deviation of the single screen multi-point air flow temperature sensor increases with the increase of the total incoming flow temperature. For each increase of 1000K, the temperature measurement deviation increases by about 2K; with the increase of the total incoming pressure, the temperature measurement deviation decreases by about 1K for every 100kPa increase; it decreases with the increase of incoming Mach number, for each increase of 0.1, the temperature measurement deviation decreases by 0.7K. The above conclusions provide a reference for the field calibration of gas flow temperature parameters in combustion chamber test.
|
Received: 25 August 2021
Published: 23 February 2022
|
|
|
|
|
[1]赵觉良. 航空发动机气动参数测量[M]. 北京: 国防工业出版社, 1980.
[2]Glawe G E, Holanda R, Krause L N. Recovery and Radiation Corrections and Time Constants of Several Sizes of Shielded and Unshielded Thermocouple Probes for Measuring Gas Temperature[R]. NASA-TP-1099 E-9289, 1978.
[3]Glawe G E. A High-Temperature Combination Sonic Aspirated Thermocouple and Total-Pressure Probe[R]. Cleveland, 1981.
[4]李国祥, 陆辰, 等. 热线(膜)风速仪输出信号的温度修正[J]. 计量学报. 1997,18(1): 50-53.
Li G X, Lu C, et al. Temperature correction of output signal of hot wire (membrane) anemometer[J]. Acta Metrologica Sinica, 1997,18(1): 50-53.
[5]赵俭. 高温气流温度测量与校准技术[J]. 计测技术, 2018, 38(6): 42-47.
Zhao J. High temperature gas flow temperature measurement and calibration technology[J]. Measurement technology, 2018, 38(6): 42-47.
[6]赵俭, 杨永军. 气流温度测量技术温度测量技术[M]. 北京: 中国质检出版社, 中国标准出版社, 2017.
[7]杨永军. 温度测量技术现状和发展概述[J]. 计测技术, 2009, 29(4): 67-70.
Yang Y J. Overview of current situation and development of temperature measurement technology[J]. Measurement technology, 2009, 29(4): 67-70.
[8]王玉芳, 赵俭. 基于CFD技术的气流温度传感器数值校准虚拟风洞初探[J]. 计测技术, 2021, 41(2): 91-94.
Wang Y F, Zhao J. Preliminary study on virtual wind tunnel for numerical calibration of airflow temperature sensor based on CFD technology[J]. Measurement technology, 2021, 41(2): 91-94.
[9]赵彬, 赵俭. 超音速条件下K型温度传感器恢复特性数值模拟[J]. 计测技术, 2016, 36(5): 1-4.
Zhao B, Zhao J. Numerical simulation of recovery characteristics of K-type temperature sensor under supersonic conditions[J]. Measurement technology, 2016, 36(5): 1-4.
[10]乔渭阳. 高温气流温度的测量[J]. 工业仪表与自动化装置, 1989,(1): 7-10.
Qiao W Y. Measurement of high temperature airflow temperature[J]. Industrial instrumentation and automation Device, 1989,(1): 7-10.
[11]韩百顺, 王伯年. 用于测量脉动气流平均流量的稳压箱的研究[J]. 计量学报. 1999, 20(3): 51-56.
Han B S, Wang B N. Study on pressure stabilizing box for measuring average flow of pulsating air flow[J]. Acta Metrologica Sinica, 1999, 20(3): 51-56.
[12]朱懿渊, 沈昱明. V锥流量计的CFD数值模拟与分析[J]. 计量学报. 2008, 29(5): 44-46.
Zhu Y Y, Shen Y M. CFD numerical simulation and analysis of V-cone Flowmeter[J]. Acta Metrologica Sinica, 2008, 29(5): 44-46.
[13]高兰, 王月兵. 基于圆环阵列的声场仿真及校准实验[J]. 计量学报. 2020, 41(9): 1109-1114.
Gao L, Wang Y B. sound field simulation and calibration experimental instrument based on ring array[J]. Acta Metrologica Sinica, 2020, 41(9): 1109-1114.
[14]Grandmaison Y. The strong-jet/weak-jet problem: new experiments and CFD[J]. Combustion and Flame, 2001,121(3):481-502.
[15]Bdulaziz A M. Performance and image analysis of a cavitating process in a small type venturi[J]. Experimental Thermal & Fluid Science, 2014, 53: 40-48.
[16]王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004.
[17]陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. |
|
|
|