|
|
Study on the Feasibility of Interpolation Method of SF6 and CO2 Triple Point Replacement of Mercury Triple Point |
YANG Jin-nan1,PAN Jiang1,SUN Jian-ping2,LI Ting2,WANG Hong-jun2,YU Jiao3,RUAN Yi-ming1,Wang Guang-yao2 |
1. China Jiliang University, Zhejiang, Hangzhou 310018, China;
2. National Institute of Metrology,Beijing 100029, China
3. Xi‘an Polytechnic University, Shaanxi, Xi'an 710048, China |
|
|
Abstract For the temperature range from 83.8058K to 273.16K, the replacement of the mercury triple point by SF6 or CO;2 triple point were theoretically analyzed. Without changing the form of interpolation equation of ITS-90, the changes of the temperature deviation and the propagation uncertainty before and after replacement were discussed. The results show that the equations defined by ITS-90 still have the applicability in the temperature range even when SF6 triple point and CO2 triple point replace Hg triple point. Under the same level of the realization uncertainties of the three fixed points, the propagation uncertainty of Hg, SF6 and CO2 triple points decreases in turn over the whole temperature range. It is predicted that the corresponding temperature primary standard level of NIM has no change when the realization uncertainty of SF6 and CO2 triple points is less than 0.25mK (k=1) and 0.27mK (k=1), respectively.
|
Received: 16 November 2021
Published: 23 February 2022
|
|
|
|
|
[1]Preston-Thomas H, Quinn T J. The International Temperature Scale of 1990(ITS-90)[J]. Metrologia, 1990, 27(1): 3-10.
[2]Minimata Convention on Mercury. Available at http://www.mercuryconvention.org,2013-10-10.
[3]曾佳旭, 潘江, 孙建平,等.微型双温度固定点容器研制[J] .计量学报, 2021, 42(4):458-462.
Zeng J X, Pan J, Sun J P, et al. Development of Miniature Double Temperature Fixed Point Cell[J]. Acta Metrologica Sinica, 2021, 42(4): 458-462.
[4]Tew W L, Quelhas K N. Realizations of the Triple Point of Sulfur Hexafluoride in Transportable and Refillable Cells[J]. Journal of Research of the National Institute of Standards and Technology, 2018, 123(2): 689-728.
[5]Kawamura Y, Nakano T. Evaluation of the triple point temperature of sulfur hexafluoride and the associated uncertainty at NMIJ/AIST[J]. Metrologia, 2020, 57(1): 347-353.
[6]Li Ting, Sun Jianping. Realization and Evaluation of the Triple Point of Sulfur Hexafluoride[J]. Metrologia, 2021, 58(3): 8-35.
[7]Yasuki K, Nobuhiro M, Tohru N. Realization of the triple point of carbon dioxide evaluated by the ITS-90[J]. Metrologia, 2019, 57(1):747-756.
[8]王颖文, 张欣, 孙建平,等. -38.8344~156.5985℃温区温标偏差方程外推和内插研究[J]. 计量学报, 2018, 39(6): 816-821.
Wang Y W, Zhang X, Sun J P, et al. Research on Extrapolation and Interpolation of Temperature Scale Deviation Equation over the Temperature -38.8344~156.5985℃[J]. Acta Metrologica Sinica, 2018, 39(6): 816-821.
[9]JJG 160—2007标准铂电阻温度计检定规程[S].
[10]Sun J P, Li T.New interpolating equation of ITS-90 for SPRTs and HTSPRTs for the temperature range 419.527℃~961.78℃[J]. Metrologia, 2020, 57(4):12-45.
[11]White D R,Ballico M,Campo D D. Uncertainties in the Realization of the SPRT Sub-ranges of the ITS90[J]. International Journal of Thermophysics, 2007, 28(6):1868-1881.
[12]康志茹, 傅广生.在0~660. 323℃温区标准铂电阻温度计的两个二次偏差函数[J].计量学报, 2005,26(2): 107-110.
Kang Z R, Fu G S.Two Quandratic Deviation Funtions for SPRT in Range 0℃ to 660.326℃[J]. Acta Metrologica Sinica, 2005,26(2): 107-110.
[13]White D R,Saunders P. The propagation of uncertainty with calibration equations[J]. Measurement Science & Technology, 2007,28:2157-2169.
[14]Liu G, Guo L, Liu C L, et al. Uncertainty propagation in the calibration equations for NTC thermistors[J]. Metrologia, 2018.57(3):6-35.
[15]任建平, 孙建平, 李婷,等. 标准铂电阻温度计自热效应对测量结果的影响[J]. 计量学报, 2021, 42(5): 589-594.
Ren J P, Sun J P, Li T, et al. Influence of Self-heating Effect of Standard Platinum ResistanceThermometer on Measurement Results[J].Acta Metrologica Sinica, 2021,42(5): 589-594.
[16]张金涛,梁宇,冯晓娟. 替代汞三相点的研究和新温标展望[J]. 计量学报, 2022, 43(2): 145-150.
Zhang J T, Liang Y, Feng X J. Prospect for Replacement of the Mercury Triple Point and a New Temperature Scale[J]. Acta Metrologica Sinica, 2022, 43(2): 145-150. |
|
|
|