|
|
Precise Measurements of Planck Constant: Histories and Present Situation |
LI Yu-fen1,HE Sui-rong1,WEI Lian-fu1,2 |
1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
2. School of Science, Donghua University, Shanghai 201620,China |
|
|
Abstract Planck constant plays the central role in quantum theory and quantum effect observations. Its accurate determination is of great significance to establish the physical standard of mass metrology, precisely detect various quantum effects, and also characterize the feature of early big bang universe. Given the precise value of Planck constant was defined in 2019 after more than a hundred years of measurements by various indirect and direct methods, the historical process is reviewed systematically, and the future development of precise measurement of Planck constant is forecasted.
|
Received: 01 December 2020
Published: 01 December 2021
|
|
Fund:National Natural Science Foundation of China |
|
|
|
[1]National Institute of Standards and Technology. CODATA recommended values of the fundamental physical constants[EB]. https://physics.nist.gov/cuu/pdf/wall_2018.pdf, 2020-09-28.
[2]Wood B M, Sanchez C A, Green R G, et al. A summary of the Planck constant determinations using the NRC Kibble balance[J]. Metrologia, 2017, 54(3): 399-409.
[3]Newell D B, Cabiati F, Fischer J, et al. The CODATA 2017 values of h, e, k, and N A for the revision of the SI[J]. Metrologia, 2018, 55(1): L13-L16.
[4]Cohen E R, Taylor B N. The 1973 Least-Squares Adjustment of the Fundamental Constants[J]. Journal of Physical & Chemical Reference Data, 1973, 2(4): 663-734.
[5]沈乃澂. 基本物理常数的最新国际推荐值[J]. 计量学报,1987, 8(1): 73-80.
Shen N C. The 1986 adjustment of the fundamental physical constants[J]. Acta Metrologica Sinica, 1987, 8(1): 73-80.
[6]Mohr P J, Newell D B, Taylor B N, et al. Data and analysis for the CODATA 2017 special fundamental constants adjustment[J]. Metrologia, 2018, 55(1): 125-146.
沈乃澂.质量单位千克定义的历史、现状和发展趋势[J]. 物理, 2014, 43(9): 606-612.
Shen N C.The history, status and developments in thedefinition of the kilogram mass unit[J]. Physics, 2014, 43(09): 606-612.
[7]马爱文, 曲兴华. SI基本单位量子化重新定义及其意义[J]. 计量学报, 2020, 41(2): 129-133.
Ma A W,Qu X H. The Quantized Redefinition of the SI and its Signification. Acta Metrologica Sinica, 2020, 41(2): 129-133.
[8]Planck M. On the Law of Distribution of Energy in the Normal Spectrum[J]. Annalen der Physik, 1901, 4(3): 553-563.
[9]Einstein A. ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt[J]. Annalen Der Physik, 1905, 4(17): 132-148.
[10]Millikan R A. A direct photoelectric determination of Plancks “h”[J]. Physical Review, 1916, 7(3): 355-388.
[11]Lukirsky P, Prileaev S. ber den normalen Photoeffekt[J]. Ztschrift Für Physik, 1928, 49(3): 236-258.
[12]Blake F C, Duane W. The Critical Absorption of Some of the Chemical Elements for High Frequence X-Rays[J]. Physical Review, 1917, 10(6): 697-704.
[13]Duane W, Palmer H H, Yeh C S. A Remeasurement of the Radiation Constant, h, by Means of X-Rays [J]. Proc Natl Acad Sci U S A, 1921, 7(8): 237-242.
[14]Birge R T, Dorsey N E. The most probable value of certain basic constants[J]. Science, 1926, 64(1651): 180-182.
[15]Bearden J A, Schwarz G. A Precision Evaluation of he by X-Rays[J]. Physical Review, 1950, 79(4): 674-684.
[16]代波.康普顿效应的进一步讨论[J]. 大学物理, 2010, 29(9): 30-32.
Dai B. Discussion on the Compton effect[J]. College Physics, 2010, 29(9): 30-32.
[17]Dumond J W M, Lind D A, Watson B B. Precision Measurement of the Wave-Length and Spectral Profile of the Annihilation Radiation from Cu64 with the Two-Meter Focusing Curved Crystal Spectrometer[J]. Physics Review, 1949, 75(8): 1226-1239.
[18]Rymer T B, Wright K H R. Potentiometer circuit for measurement of high potential[J]. Journal of Scientific Instruments, 1952, 29: 139-141.
[19]Josephson B D. Possible new effects in superconductive tunneling[J]. Physics Letters, 1962, 1(7): 251-253.
[20]Anderson P W, Rowell J M. Probable Observation of the Josephson Superconducting Tunneling Effect[J]. Physical Review Letters, 1963, 10(6): 230-232.
[21]Shapiro S. Josephson Currents in Superconducting Tunneling: The Effect of Microwaves and Other Observations[J]. Physical Review Letters, 1963, 11(2): 80-82.
[22]Cohen E R, Taylor B N. The 1973 Least-Squares Adjustment of the Fundamental Constants[J]. Journal of Physical & Chemical Reference Data, 1973, 2(4): 663-734.
[23]Taylor B N, Witt T J. New international electrical reference standards based on the Josephson and quantum Hall effects[J]. Metrologia, 1989, 26(1): 47-62.
[24]Klitzing K, Dorda G, Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[25]Cohen E R, Taylor B N. The 1986 adjustment of the fundamental physical constants[J]. Rev Mod Phys, 1987, 59(4): 1121-1148.
[26]沈乃澂.基本电荷的精密测量及电流单位安培的重新定义[J]. 物理, 2019, 48(4): 237-242.
Shen N C. Precision measurements of electric charge and the redefinition of the ampere[J]. Physics, 2019, 48(4): 237-242.
[27]韩冰, 贺青, 李世松, 等.普朗克常数h测定与质量量子基准的最新研究进展[J]. 计量学报, 2013, 34(1): 90-96.
Han B, He Q, Li S S, et al. Measurement of Planck Constant h and the Development on Quantum Mass Standard[J]. Acta Metrologica Sinica, 2013, 34(1): 90-96.
[28]Bego V. Determination of the Volt by Means of Voltage Balances[J]. Metrologia, 1988, 25(3): 127-133.
[29]Li S, Han B, Li Z, et al. Precisely measuring the Planck constant by electromechanical balances[J]. Measurement, 2012, 45(1): 1-13.
[30]Kibble B P. A measurement of the gyromagnetic ratio of the proton by the strong field method[C] //Atomic Masses and Fundamental Constants. New York, US, 1976.
[31]Kibble B P, Robinson I A, Belliss J H, et al . A Realization of the SI Watt by the NPL Moving-coil Balance[J]. Metrologia, 1990, 27(4): 173-192.
[32]李正坤, 张钟华, 鲁云峰, 等.能量天平及千克单位重新定义研究进展[J]. 物理学报, 2018, 67(16): 160601.
Li Z K, Zhang Z H, Lu Y F, et al. Energy balance and redefinition of kilogram unit[J]. Acta Physica Sinica, 2018, 67(12): 160601.
[33]Zhang Z, He Q, Li Z, et al. Recent Development on the Joule Balance at NIM[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(7): 2533-2538.
[34]李辰, 贺青, 张钟华, 等.能量天平反馈系统的改进[J]. 仪器仪表学报, 2014, 35(5): 987-993.
Li C, He Q, Zhang Z H, et al. Improvements in the feedback system of Joule balance[J]. Chinese Journal of Scientific Instrument, 2014, 35(5): 987-993.
[35]Xu J X, Zhang Z H, Li Z K, et al. A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM[J]. Metrologia, 2016, 53(1): 86-97.
[36]Li Z K, Zhang Z H, Lu Y F, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017, 54(5): 399-409.
[37]张钟华,李辰,贺青,等. 能量天平研究进展[J]. 计量学报, 2014, 35(4): 305-310.
Zhang Z H, Li C, He Q, et al. The Progress of Joule Balance[J]. Acta Metrologica Sinica, 2014, 35(4): 305-310.
[38]白洋, 王大伟, 李正坤, 等.能量天平悬挂系统初始位姿识别方法[J]. 计量学报, 2020, 41(3): 273-278.
Bai Y, Wang D W, Li Z K, et al. Recognition of Initial Position and Posture of Suspended Coil in Joule Balance[J]. Acta Metrologica Sinica, 2020, 41(3): 273-278.
[39]任飞安, 许金鑫, 由强, 等.能量天平永磁体系统的温度场分析[J]. 计量学报, 2019, 40(3): 353-360.
Ren F A, Xu J X, You Q, et al. Thermal Analysis of Permanent-Magnet System in the Joule Balance[J]. Acta Metrologica Sinica, 2019, 40(3): 353-360.
[40]曾涛, 鲁云峰, 李正坤, 等.能量天平水平安培力与电磁转矩引起对准能量误差的评估[J]. 计量学报, 2018, 39(6): 753-758.
Zeng T, Lu Y F, Li Z K, et al. Joule Balance Alignment Energy Error Evaluation by Horizontal Ampere Force and Electromagnetic Torque[J]. Acta Metrologica Sinica, 2018, 39(6): 753-758. |
|
|
|