|
|
Optimization of Leaf-spring-type Recovery Mechanism for Low-frequency Standard Vibrator Based on Genetic Algorithm |
ZHANG Xu-fei1,2,ZHANG Feng-yang1,LI Kai1,QUAN Long1,2 |
1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
2. Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China |
|
|
Abstract In order to effectively improve the flexible guiding performance and high-frequency working stability of the leaf spring recovery mechanism of the low-frequency standard vibrator, the working principle of the leaf-spring-type electromagnetic vibrator and its simplified electromechanical coupling model are analyzed. The influence of different combination of recovery spring sizes on the modal frequencies and output characteristics of the vibrator are obtained through the modal and harmonic response analyses based on Ansys. The results show that the width and thickness of the horizontal and side springs are the main influencing factors. Based on the multi-objective genetic algorithm, the optimal sizes of the horizontal and side springs are obtained iteratively under the condition of the vibrator output characteristics, and the second-order twisted mode frequency of the recovery spring is increased to 442.05Hz, which is nearly twice as much as the lowest value. The research results effectively expand the stable working frequency range and improve the working performance of the vibrator.
|
Received: 02 March 2021
Published: 01 December 2021
|
|
|
|
|
[1]于梅, 何闻, 刘爱东, 等. 超低频振动国家计量基准装置的研究与建立[J]. 计量学报, 2011, 32(2): 97-100.
Yu M, He W, Liu A D, et al. Study and establishment of the national standard of the ultra-low frequency vibration[J]. Acta Metrologica Sinica, 2011, 32(2): 97-100.
[2]于梅. 低频超低频振动计量技术的研究与展望[J]. 计量学报, 2007, 26(11): 83-86,94.
Yu M. Research prospects of metrology technology for low-frequency and super low-frequency vibration[J]. Acta Metrologica Sinica, 2007, 26(11): 83-86, 94.
[3]ISO 16063-11. Methods for the calibration of vibration and shock transducers, Part 11: Primary vibration calibration by laser interferometry [S]. 1999.
[4]胡红波, 杨丽峰, 于梅. 零差干涉仪用于振动校准中关键技术的研究[J]. 计量学报, 2018, 39(3): 368-372.
Hu H B, Yang L F, Yu M. Study on key technologies of vibration calibration using homodyne interferometer[J]. Acta Metrologica Sinica, 2018, 39(3): 368-372.
[5]王朝, 蔡晨光, 杨明, 等. 基于激光干涉仪数字信号解码的振动校准方法[J]. 计量学报, 2021, 42(3): 282-286.
Wang Z, Cai C G, Yang M, et al. Vibration Calibration Method Based on the Decoding of Heterodyne Interferometer Output S/PDIF Digital Signal[J]. Acta Metrologica Sinica, 2021, 42(3): 282-286.
[6]Ripper G P, Dias R S, Garcia G A. Primary accelerometer calibration problems due to vibration exciters [J]. Measurement, 2009, 42(9): 1363-1369.
[7]Nicklich H, Mende M. Calibration of very-low-frequency accelerometers A challenging task[J]. Sound and Vibration, 2011, 45(5): 1521-1527.
[8]魏燕定. 超低频标准振动台支承弹簧选择设计[J]. 机械科学与技术, 2000, 19(3): 395-396, 401.
Wei Y D. Selection and design of suspension spring in ultra-low frequency standard vibrator[J]. Mechanical Science and Technology, 2000, 19(3): 395-396, 401.
[9]魏燕定. 超低频标准振动台波形失真度近似解析解[J]. 振动与冲击, 2000, 19(3): 49-51.
Wei Y D. Approximate analytical solution of waveform distortion of ultra-low frequency standard vibrator[J]. Journal of Vibration and Shock, 2000, 19(3): 49-51.
[10]陈群. 长行程超低频水平向电磁振动台中关键技术问题的研究[D]. 杭州: 浙江大学, 2015.
[11]He W, Zhang X F, Wang C Y, et al. A long-stroke horizontal electromagnetic vibrator for ultralow-frequency vibration calibration[J]. Measurement Science and Technology, 2014, 25(8): 085901.
[12]陈晓建, 周世华. 具有强非线性振动台动力学特性研究[J]. 机械设计与制造, 2018, (z1): 157-159.
Chen X J, Zhou S H. Dynamic analysis of a parametrically excited vibration platform with strong nonlinearity[J]. Machinery Design & Manufacture, 2018, (z1): 157-159.
[13]何闻, 张旭飞, 贾叔仕, 等. 用于标准振动台的簧片悬架结构: 2015100481364 [P]. 2015-07-15.
[14]Lang G F. Electrodynamic shaker fundamentals[J]. Sound and Vibration, 1997, 31(4): 14-23.
[15]Lang G F, Snyder D. Understanding the physics of electrodynamic shaker performance[J]. Sound and Vibration, 2001, 35(10): 24-33.
[16]杨阳, 李春, 缪维跑, 等. 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报, 2015, 51(14): 192-198.
Yang Y, Li C, Miao W P, et al. Global optimal design of wind turbines blade based on multi-object genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51(14): 192-198.
[17]刘彬, 张春燃, 孙超, 等. 多种群遗传算法在篦冷机二次风温预测中的应用[J]. 计量学报, 2019, 40(2): 252-258.
Liu B, Zhang C R, Sun C, et al. The application of multi-population genetic algorithm in secondary air temperature of grate cooler[J]. Acta Metrologica Sinica, 2019, 40(2): 252-258. |
|
|
|