|
|
Research on Micro Friction Testing Technology of Micro-electro-mechanical System |
WU Cui-hong1,YU Bo2,ZHAO Jing1,LIU Xiao-han1,WU Xin-yu1 |
1. College of Optical And Electronical Information, Changchun University of Science And Technology, Changchun, Jilin 130012, China
2. School of Mechanical and Engineer, Changchun Institute of Technology, Changchun, Jilin 130012, China |
|
|
Abstract In order to solve the problem of micro-friction in micro-electro-mechanical systems(MEMS), a micro-friction test technology based on light reflection was proposed. The basic principles and implementation steps of the test method were discussed, the test prototype was developed, the complete process of measurement and calibration of the test system was analyzed in detail, and finally the measurement data and curve of the test system were obtained. Through the micro-friction experiment test on the Cu-Si and Al-Si surfaces, the micron-level micro-friction coefficients of the Cu-Si and Al-Si surfaces were obtained. It provides a basis for the understanding and design of the micro-mechanisms motion characteristics.
|
Received: 20 October 2020
Published: 18 October 2021
|
|
|
|
|
[1]荆根强, 郭鸿博, 刘璐, 等. 双轮式摩擦仪测量模型的共激励源动态标定方法[J]. 计量学报, 2019, 40(6): 1071-1076.
Jing G Q, Guo H B, Liu L, et al. The common excitation source dynamic calibration method for the measurement model of the two-wheel tribometer[J]. Acta Metrology Sinca, 2019, 40(6): 1071-1076.
[2]Traore M M. Influences of the Textured Surface Micro-Texture Depth on the Friction Coefficient[J]. World Journal of Mechanics, 2020, 10(12): 221-228.
[3]冯辰, 刘同冈, 商金玮, 等. MEMS微摩擦磨损仪器的研究进展[J]. 微纳电子技术, 2016, 53(8): 520-526.
Feng C, Liu T G, Shang J W, et al. Research progress of MEMS micro friction and wear instruments[J]. Micro-nanoelectronic technology, 2016, 53(8): 520-526.
[4]张文明, 孟光. 微机电系统磨损特性研究进展[J]. 摩擦学学报, 2005,25(5): 489-494.
Zhang W M, Meng G. Research progress on wear characteristics of MEMS [J]. Acta Tribology, 2005,25(5): 489-494.
[5]Schaarschmidt I, Steinert P, Hackert-Oschtzchen M, et al. Experimental Study on Micro Forming of Structured Surfaces for High Static Friction Connection Elements[J]. Procedia Manufacturing, 2020, 50(8): 47-51.
[6]李一全, 施庆永, 于化东, 等. 微摩擦测试中双平行簧片结构弹性元件的设计[J]. 仪表技术与传感器, 2012(12): 176-178.
Li Y Q, Shi Q Y, Yu H D, et al. Design of elastic element with double parallel reed structure in micro friction test[J]. Instrument Technology and Sensor, 2012(12): 176-178.
[7]王梁, 程先华. 微摩擦测试的微力传感器设计[J]. 上海交通大学学报, 2005,39(11): 56-58+62.
Wang L, Cheng X H. Micro friction test micro-force sensor design [J]. Shanghai Jiaotong University, 2005,39(11): 56-58+62.
[8] Ku I S Y, Reddyhoff T, Choo J H, et al. A novel tribometer for the measurement of friction in MEMS[J]. Tribology International, 2009 , 43(5): 1087-1090.
[9]吴红艳, 雷勇, 吴红霞, 等. 石墨烯在微机电系统中力学及摩擦学性能的研究进展[J]. 材料导报, 2015, 29(15): 65-69.
Wu H Y, Lei Y, Wu H X, et al. Research progress on the mechanical and tribological properties of graphene in microelectro mechanical systems[J]. Materials Review, 2015, 29(15): 65-69.
[10]刘庆玲, 翁海珊. 微机电中的摩擦特性与有序薄膜润滑[J]. 机械设计与制造, 2008(2): 100-102.
Liu Q Lling, Weng H S. Friction characteristics and ordered thin film lubrication in micro-electro-mechanics [J]. Machinery Design and Manufacturing, 2008(2): 100-102.
[11]许颖, 于化东, 于占江, 等. 微小摩擦测试系统设计[J]. 计量学报, 2013, 34(5): 452-456.
Xu Y, Yu H D, Yu Z J, et al. Design of the Micro-friction Testing System. Acta Metrologica Sinica[J]. Acta Metrology Sinca, 2013, 34(5): 452-456.
[12]张红英, 余晓芬, 王标. 大空间坐标测量网络的现场实时标定方法[J]. 计量学报, 2018, 39(1): 1-5.
Zhang H Y, Yu X F, Wang B. On-site real-time calibration method of large-space coordinate measurement network [J]. Acta Metrology Sinca, 2018, 39(1): 1-5.
[13]赵浩, 冯浩. 一种振动转矩传感器标定方法研究[J]. 计量学报, 2018, 39(2): 178-181.
Zhao H, Feng H. Research on a calibration method of vibration torque sensor[J]. Acta Metrology Sinca, 2018, 39(2): 178- 181.
[14]温秀兰, 崔俊宇, 芮平, 等. 轴线测量与迭代补偿的机器人几何参数标定[J]. 计量学报, 2018, 39(4): 449-454.
Wen X L, Cui J Y, Rui P, et al. Calibration of robot geometric parameters based on axis measurement and iterative compensation [J]. Acta Metrology Sinca, 2018, 39 (4): 449-454.
[15]陆艺, 沈添秀, 罗哉, 等. 基于线结构光传感器的工业机器人运动学参数标定[J]. 计量学报, 2021, 42(1): 66-71.
Lu Y, Shen T X, Luo Z, et al. Calibration of kinematic parameters of industrial robots based on line structured light sensor[J]. Acta Metrology Sinca, 2021, 42(1): 66-71.
[16]赵艺兵, 温秀兰, 乔贵方, 等. 基于几何参数标定的串联机器人精度提升[J]. 计量学报, 2020, 41(12): 1461-1467.
Zhao Y B, Wen X L, Qiao G F, et al. Accuracy improvement of tandem robots based on geometric parameter calibration [J]. Acta Metrology Sinca, 2020, 41(12): 1461-1467. |
|
|
|