|
|
Research on Accurate Measurement of Low Concentration Nitric Oxide in High Temperature Water-containing Flue Gas Based on FTIR Spectrometer |
LÜ Hong-zhen1,2,3,MA Ruo-meng3,ZHANG Liang2,3,LIN Hong2,3, FENG Xiao-juan2,FANG Li-de1,ZHANG Jin-tao2,3 |
1. School of Quality and Technology Supervision, Hebei University, Baoding, Hebei 071002, China
2. Division of Thermophysics and Process Measurements, National Institute of Metrology, Beijing 100029, China
3. Zhengzhou Institute of Metrology, Zhengzhou, Henan 450001, China |
|
|
Abstract With the deepening of national ultra-low emission policy, higher requirements are put forward for accurate measurement of pollutant concentration in the flue gas. Based on Fourier transform infrared(FTIR) spectrometer, an accurate measurement system for nitric oxide (NO) gas under high temperature and water content was established. The absorption spectra of 5%~20% water vapor and 5~40μmol/mol NO were measured before and after mixing at 191℃. The NO concentration was accurately determined by correcting the absorbance of H2O in the mixture, and system measurement uncertainty was evaluated. The results show that the relative deviation between the measurement result of NO in high temperature water-containing and the standard gas value is less than 1.8%, and the relative expanded uncertainty of the measurement is 2.78% (k=2). The system has good measurement accuracy and stability. It is of great significance to the implementation of the national ultra-low emission policy and the collection of environmental taxes.
|
Received: 31 December 2020
Published: 20 April 2021
|
|
|
|
|
[1]胡鹤鸣, 王池, 张金涛. 城市区域碳排放测量反演研究国际进展[J]. 计量学报, 2017, 38(1): 7-12.
Hu H M, Wang C, Zhang J T. International Research Overview of Inversion Approach of Carbon Emission Measurement in Urban Area[J]. Acta Metrologica Sinica, 2017, 38(1): 7-12.
[2]任歌, 张亮, 林鸿, 等. 温室气体和大气污染物排放量监测与计量研究[J]. 计量技术, 2020, (5): 79-84.
[3]邹冰妍, 林鸿, 张亮, 等. 点排放源中二氧化碳浓度的测量研究[J]. 计量学报, 2019, 40(2): 246-251.
Zhou B Y, Lin H, Zhang L, et al. Investigatigation on CO2Concentration Measurement for Point Emission Source[J]. Acta Metrologica Sinica, 2019, 40(2): 246-251.
[4]李剑, 王德发, 夏春, 等. 用于低浓度NO2精确测量的傅里叶变换红外光谱系统研究[J]. 计量学报, 2019, 40(3): 517-521.
Li J, Wang D F, Xia C, et al. Research on a FTIR System for Accurate Measurement of Low Concentration NO2[J]. Acta Metrologica Sinica, 2019, 40(3): 517-521.
[5]王德发, 吴海, 刘沂玲. NO2气体标准物质的研制[J]. 计量学报, 2010, 31(z1): 178-183.
Wang D F, Wu H, Liu Y L. The Development of NO2 Reference Material in Cylinder[J]. Acta Metrologicala Sinica, 2010, 31(z1): 178-183.
[6]马若梦, 林鸿, 张亮, 等. 基于多次反射直接吸收精确测量二氧化碳浓度的研究[J]. 计量学报, 2020, 41(4): 425-429.
Ma R M, Lin H, Zhang L, et al. Measurement of Carbon Dioxide Concentration Based on Multi-pass Absorption Technology[J]. Acta Metrologica Sinica, 2020, 41(4): 425-429.
[7]朱泽军, 李红亮, 李峰, 等. 超低排放用便携式烟气分析仪采样预处理设备应用综述[J]. 分析仪器, 2019, (3): 8-13.
[8]Pottel H. Quantitative models for prediction of toxic component concentrations in smoke gases from FT IR spectra [ J]. Fire Materials, 1996, 20(6): 273-291.
[9]Speitel L C. Fourier transform infrared analysis of combustion gases:
DOT/FAA/AR-01/88[R]. Washington, D.C.: Office of Aviation Research, 2001.
[10]连晨舟, 吕子安, 徐旭常. 典型毒害气体的FTIR吸收光谱分析[J]. 中国环境监测, 2004, 20(2): 17-20.
Lian C Z, Lü Z A, Xu X C, et al. FTIR spectroscopic analysis of the exit gas in industry[J]. Environmental Monitoring of China., 2004, 20(2): 17-20.
[11]李天津, 禚玉群, 陈昌和, 等. 含水条件下多组分污染气体的FTIR同时在线测量[J]. 清华大学学报(自然科学版), 2008, 48(11): 1971-1975.
Li T J, Zhuo Y X, Chen C H, et al. Simultaneous on-line FTIR measurements of multicomponent pollutants in wet gas mixtures[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(11): 1971-1975.
[12]李胜, 肖兵. 基于TDLAS测量二氧化碳动态浓度与温度[J]. 自动化与信息工程, 2006, 27(4): 8-11.
Li S, Xiao B. Measurement of CO2 Dynamic Concentration and Temperature Based on TDLAS [J]. Automation & Information Engineering, 2006,27(4): 8-11.
[13]Bacsik Z, Mink J, Keresztury G. FTIR spectroscopy of the atmosphere Part 1. Principles and methods [ J]. Applied Spectroscopy Reviews, 2004, 39(3): 295-363.
[14]Jaakkola P T, Vahlman T A, Roos A A, et al. Online analysis of stack gas composition by a low resolution FT-IR gas analyzer [ J]. Water Air Soil Pollution, 1998, 101(1-4): 79-92.
[15]Bacsik Z, Mink J, Keresztury G. FTIR spectroscopy of the atmosphere Part 2. Applications[J]. Applied Spectroscopy Reviews, 2005, 40(4): 327-390.
[16]赵欣月, 林鸿, 杨雷, 等. 1.6微米附近氮气展宽的一氧化碳分子线形的研究[J]. 计量学报, 2017, 38(1): 13-18.
Zhao X Y, Lin H, Yang L, et al. Inverstigation on line shape for N2-broadened CO near 1. 6μm[J]. Acta Metrologica Sinica, 2017, 38(1): 13-18.
[17]吕世龙, 赵会杰, 任利兵, 等. FTIR固定污染源VOCs在线监测系统[J]. 光谱学与光谱分析, 2018, 38(10): 3106-3111.
Lü S L, Zhao H J, Ren L B, et al. The Online Monitoring System of VOCs Emitted by Stationary Pollution Source Based on FTIR[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3106-3111. |
|
|
|