|
|
Temperature Calibration Method of Optical Power Thermal Analyzer |
LI Shuo1,YU Zhi-gao2,YAO Ya-xuan1,REN Ling-ling1 |
1. Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China |
|
|
Abstract The accurate measurement of phase change temperature of thin film materials is the key to application of phase change materials. The optical power thermal analyzer (OPA) is a new apparatus to measure the phase change temperature of thin film materials. The mechanism of OPA is that the optical reflectivity of thin films will change dramatically after the phase change. The OPA reaches the phase change temperature of thin films by infrared heating in vacuum conditions. The temperature measurement method of OPA and in situ temperature calibration by standard thermocouple were studied for accurate measurement of phase change temperature, which was traced to SI unit. The temperature of uncertainty in the range of 100℃ to 1000℃ were evaluated. The calibration fitting formula was obtained, the correlation coefficient is 0.9997.
|
Received: 22 August 2019
Published: 19 January 2021
|
|
|
|
|
[1]Kim D H, Kwok H S. Pulsed laser deposition of VO2 thin films [J]. Applied Physics Letters, 1994, 65(25): 3188-3190.
[2]Lencer D, Salinga M, Wuttig M. Design rules for phase-change materials in data storage applications [J]. Advanced Materials, 2011, 23: 2030-2058.
[3]黄章立. 低温相变氧化钒薄膜的制备及性能研究 [D]. 武汉: 华中科技大学, 2013.
[4]宋志棠. 相变存储器与应用基础 [M]. 北京: 科学出版社, 2013.
[5]国北辰, 陈少华, 王书强, 等. 一种薄膜材料电阻率测试用环形电极设计[J]. 计量学报, 2020, 41(3): 349-353.
Guo B C, Chen S H, Wang S Q, et al. Ring Electrode Design for Resistivity Test of Thin Film Materials[J]. Acta Metrologica Sinica, 2020, 41(3): 349-353.
[6]张恒, 曾凡超, 文昌俊, 等. 一种高精度薄膜铂电阻温度计测量迟滞性的研究[J]. 计量学报, 2019, 40(6): 1025-1029.
Zhang H, Zeng F C, Wen C J, et al. Research on Hysteresis of the High-precision Thin-film Platinum Tesistance Thermometers[J]. Acta Metrologica Sinica, 2019, 40(6): 1025-1029.
[7]李承花, 张奕, 左琴华, 等. 差式扫描量热仪的原理与应用 [J]. 分析仪器, 2015, 4: 88-94.
Li C H, Zhang Y, Zuo Q H, et al. Application of differential scanning calorimeter [J]. Analytical Instrumentation, 2015, 4: 88-94.
[8]甄睿. 形状记忆合金相变温度的常用测量方法 [J]. 南京工程学院学报, 2006, 4(1): 27-32.
Zhen R. Methods of measuring shape memory alloys transformation temperature [J]. Journal of Nanjing Institute of Technology, 2006, 4(1): 27-32.
[9]王春芳, 路岩, 赵晓丽. 热膨胀法在钢铁材料固态相变研究中的应用 [J]. 钢铁研究学报, 2015, 27(11): 1-7.
Wang C F, Lu Y, Zhao X L. Application of dilatometry to phase transformation analysis of solid state in iron and steel [J]. Journal of Iron and Steel Research, 2015, 27(11): 1-7.
[10]罗洪艳, 牟波, 廖彦剑, 等. 形状记忆合金相变温度常用测量方法的比较研究 [J]. 材料导报, 2009, 23(9): 57-60.
Luo H Y, Mu B, Liao Y J, et al. Camparison study on measurement methods for transformation temperature of shape memory alloy [J]. Materials Reports, 2009, 23(9): 57-60.
[11]童浩. 超晶格相变材料研究 [D]. 武汉: 华中科技大学, 2011.
[12]原遵东, 郝小鹏, 王景辉, 等. 黑体辐射源的多波长有效亮度温度校准和不同溯源方式特点分析[J]. 计量学报, 2017, 38(2): 135-140.
Yuan Z D, Hao X P, Wang J H, et al. Multi-wavelength effective radiance temperature calibration and characteristics analysis of traceable approaches of the blackbody radiation sources[J]. Acta Metrologica Sinica, 2017, 38(2): 135-140.
[13]陈凌峰. 标准不确定度A类评定中极差法的深入讨论[J].计量学报, 2019, 40(2): 347-352.
Chen L F. The Further Discussion of the Range Method in the Type A Evaluation of Sstandard Uncertainty[J]. Acta Metrologica Sinica, 2019, 40(2): 347-352.
[14]倪育才. 实用测量不确定度评定[M]. 2版.北京: 中国计量出版社, 2009.
[15]JJF 1637-2017 廉金属热电偶校准规范 [S].
[16]GB/T 16839. 1-1997 热电偶 第1部分: 分度表 [S]. |
|
|
|