[1]龚杰. 液体微小流量装置的设计与研究[D]. 镇江: 江苏大学, 2018.
[2]Ahrens M, Klein S, Nestler B, et al. Design and uncertainty assessment of a setup for calibration of microfluidic devices down to 5nL/min[J]. Measurement Science and Technology, 2014, 25(1): 015301.
[3]van der Beek M P, Mijndert P, Lucas P. Realizing primary reference values in the nanoflow regime, a proof of principle[J]. Measurement Science and Technology, 2010, 21(7): 074003.
[4]Bissig H, Tschannen M, de Huu M. Micro-flow facility for traceability in steady and pulsating flow[J]. Flow Measurement and Instrumentation, 2015, 44: 34-42.
[5]Florestan O, Sandy M, Julien S. Recent improvements of the French liquid micro-flow reference facility[J]. Measurement Science and Technology, 2017, 29(2): 024007.
[6]David C, Claudel P. Novel water flow facility in france range extension to low flow rates (10000 mL/h down to 1 mL/h)[J]. MAPAN, 2011, 26(3): 203-209.
[7]Doihara R, Shimada T, Cheong K H, et al. Liquid low-flow calibration rig using syringe pump and weighing tank system[J]. Flow Measure ment and Instrumentation, 2016, 50: 90-101.
[8]Batista E, Gala J, Ribeiro L, et al. Desenvolvimento de um padrrd de medimeo de caudal de fluidos[J]. Medicoes e Ensaios, 2014, 7: 16-26.
[9]Melvad C, Krühne U, Frederiksen J, et al. Design considerations and initial validation of a liquid microflow calibration setup using parallel operated syringe pumps[J]. Measurement Science and Technology, 2010, 21(7): 074004.
[10]Schmidt J W, Wright J D. Micro-Flow Calibraton Facility at NIST[C]//Proceedings of the 9th International Symposium on Fluid Flow Measurement, Virginia, Arlington, 2015.
[11]Lucas P, Ahrens M, Gerl J, et al. Primary standard for liquid flow rates between 30 and 1500 nL/min based on volume expansion[J]. Biomedical Engineering/ Biomedizinische Technik, 2015, 60(4): 317-335.
[12]Bohl W, Elmendorf W. Technische Strmungslehre[M]. Vogel Fachbuch: Verlag, 2008.
[13]Benkova M, kulecky I. Primary Standard and Traceability Chain for Microflow of Liquids[C]// Proceedings of the 18th International Flow Measurement, Paris, France, 2013.
[14]Wright J D, Schmidt J W. Reproducibility of Liquid Micro-Flow Measurements[C]//Proceedings of the 18th International Flow Measurement, Portugal, Lisbon, portuguesa 2019.
[15]Bissig H, Petter H T, Lucas P, et al. Primary standards for measuring flow rates from 100 nL/min to 1 mL/min-gravimetric principle[J]. Biomedizinische Technik Biomedical Engineering, 2015, 60(4): 301-16.
[16]Wright J D, Schmidt J W. Reproducibility of Liquid Micro-Flow Measurements[C]//Proceedings of the 18th International Flow Measurement, Lisbon, portuguesa 2019.
[17]Florestan O, Sandy M, Julien S, et al. Experimental study of buoyancy and surface tension effects of an immersed capillary gravimetric micro-flow facility[C]//Proceedings of the 17th International Flow Measurement, Sydney, Australia 2016.
[18]Powers S E, Tamblin M E. Wettability of porous media after exposure to synthetic gasolines[J]. Journal of Contaminant Hydrology, 1995, 19(2): 105-125. 1995, 19(2): 105-125.
[19]Bissig H, Tschannen M, de Huu M. Traceable Response Time Characterization in Fast Changing Flow Rates[C]//Proceedings of the 10th International Symposium on Fluid Flow Measurement, Mexico, 2018. |