|
|
Throughput Prediction of Port Based on Back Propagation Neural Network Optimized by Ant Colony Algorithm |
LI Chang-an1,3,4,LU Xue-qin2,WU Zhong-qiang2,ZHANG Li-jie1,3 |
1. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education of China, Yanshan University, Qinhuangdao, Hebei 066004, China
2. College of Electric Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
3. Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, Hebei 066004, China
4. Shenhua Tianjin Coal Terminal Co. Ltd., Tianjin 300457, China |
|
|
Abstract Port cargo throughput is an important index of port production and operation scale, and it is the basis for port construction and development. In order to maximize the role of port, it is necessary to make a reasonable and effective forecast for port cargo throughput. Ant colony algorithm is used to optimize the initial weight and threshold of BP neural network, and the prediction model is established to predict the port cargo throughput. Ant colony algorithm has the characteristics of global search, distributed computation and strong robustness, which is beneficial to accelerate the convergence speed of BP neural network, avoids the problem of easy to fall into local extremum, and improves the modeling accuracy. The application in port throughput prediction shows that the average absolute percentage errors of BP neural network model optimized by ant colony algorithm, fuzzy neural network prediction model, RBF prediction model and BP prediction model are 2.826%, 3.734%, 4.990% and 6.566% respectively; meanwhile, the convergence speed of BP neural network model optimized by ant colony algorithm is the fastest.
|
Received: 16 August 2019
Published: 02 November 2020
|
|
|
|
|
[1]Notteboom T E, Parola F, Satta G. The relationship between transhipment incidence and throughput volatility in North European and Mediterranean container ports[J]. Journal of Transport Geography, 2019, 74: 371-381.
[2]Niu M F, Hu Y Y. A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting[J]. Applied Mathematical Modelling, 2018,57: 163-178.
[3]刘逸群, 曾鸣. 港口集装箱吞吐量预测方法研究[J]. 物流工程与管理, 2018, 40(8): 85-87.
Liu Y Q, Zeng M. Research on Port Container Throughput Forecasting Method [J]. Logistics Engineering and Management, 2018, 40(8): 85-87.
[4]刘源, 韩阳易. 河南省货运吞吐量预测研究[J]. 现代商业, 2018, (11): 54-55.
Liu Y, Han Y Y. Research on Forecast of Freight Throughput in Henan Province[J]. Modern Commerce, 2018, (11): 54-55.
[5]吴琛. 基于时间序列模型的港口集装箱吞吐量预测[J]. 珠江水运, 2019, (5): 73-74.
Wu C. Port Container Throughput Forecast Based on Time Series Model[J]. Pearl River Water Transport, 2019, (5): 73-74.
[6]余国刚, 冯琪, 徐粉. 张家港永嘉集装箱码头集装箱吞吐量组合预测[J]. 物流技术, 2017, 36(4): 103-107.
Yu G G, Feng Q, Xu F. Container Throughput Combination Forecast of Zhangjiagang Yongjia Container Terminal[J]. Logistics Technology, 2017, 36(4): 103-107.
[7]张淑清, 任 爽, 陈荣飞, 等. 基于大数据简约及PCA改进 RBF网络的短期电力负荷预测[J]. 计量学报, 2018, 39(3): 392-396.
Zhang S Q, Ren S, Chen R F, et al. Short term power load forecast based on big data reduction and PCA improved RBF network[J]. Acta Metrologica Sinica, 2018, 39(3): 392-396.
[8]张淑清, 任 爽, 姜安琦, 等. PCA GRNN在综合气象短期负荷预测中的应用[J]. 计量学报, 2017, 38(3): 340-344.
Zhang S Q, Ren S, Jiang A Q, et al. Application of PCA GRNN in intergrated meteorological short term load forecasting[J]. Acta Metrologica Sinica, 2017, 38(3): 340-344.
[9]朱庆辉, 勾翔宇. 基于小波神经网络的上海港集装箱吞吐量预测[J]. 中国水运, 2019, (6): 25-27.
Zhu Q H, Gou X Y. Container Throughput Forecast of Shanghai Port Based On Wavelet Neural Network[J]. China Water Transport, 2019, (6): 25-27.
[10]刘枚莲, 朱美华. 基于BP神经网络的港口吞吐量预测模型[J]. 系统科学学报, 2012, 20(4): 88-91.
Liu M L, Zhu M H. Prediction Model of Port Throughput Based on BP Neural Network[J]. Journal of Systems Science, 2012, 20(4): 88-91.
[11]Huang A Q, Lai K K, Li Y H, et al. Forecasting container throughput of Qingdao port with a hybrid model [J]. Journal of Systems Science & Complexity, 2015, 28(1): 105-121.
[12]Geng J, Li M W, Dong Z H, et al. Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm[J]. Neurocomputing, 2015,(147): 239-250.
[13]王小川, 史峰, 郁磊, 等. MATLAB神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013.
[14]杨客. 遗传算法优化的BP神经网络在连云港港口吞吐量预测中的应用研究[D]. 深圳: 深圳大学, 2017.
[15]Ding M J, Zhang S Z, Zhong H D, et al. A prediction model of the sum of container based on combined BP neural network and SVM[J]. Journal of Information Processing Systems, 2019 , 15(2): 305-319.
[16]包子阳, 余继周, 杨杉. 智能优化算法及其MATLAB实例[M]. 北京: 电子工业出版社, 2018.
[17]Jiang L P, Wang J J , Jiang H, et al. Prediction model of port throughput based on game theory and multimedia Bayesian regression[J]. Multimedia Tools and Applications, 2019, 78(4): 4397-4416.
[18]胡克满, 蒋勇, 王顺林, 等. 基于灰色神经网络的港口货物吞吐量预测算法[J]. 物流技术, 2018, 37(2): 68-72.
Hu K M, Jiang Y, Wang S L, et al. Prediction algorithm of port cargo throughput based on grey neural network [J]. Logistics technology, 2018, 37(2): 68-72. |
|
|
|