|
|
Effect of Sample Tilt on Measurement of Friction Coefficient by Microscratch Test of Copper with a Spherical Indenter |
LIU Ming,HUANG Cheng-xin,GAO Cheng-hui |
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China |
|
|
Abstract The microscratch test of copper was carried out by a spherical indenter, and the effect of sample tilt on the measurement of friction coefficient was studied under constant normal load. The results show that the nominal friction coefficient measured in the experiment is linearly related to the tilt angle, and the difference of ±9° will cause the friction coefficient to differ by about 14 times. By establishing the position relation model between the spherical indenter and the inclined state of the sample, it is found that the inclination of the sample has almost no effect on the adhesion friction coefficient, but the plowing friction coefficient changes linearly with the tilt angle. In order to accurately calculate the true friction coefficient under non-tilting condition, the conversion between the nominal friction coefficient and the true friction coefficient can be realized by the flat-on-flat type contact mechanics model. Another way is to reciprocate at different positions on the surface of the sample, and the average value is used as the final result.
|
Received: 13 May 2019
Published: 10 October 2020
|
|
|
|
|
[1]瞿全炎, 邱万奇, 曾德长, 等. 划痕法综合评定膜基结合力[J]. 真空科学与技术学报, 2009, 29(2): 184-187.
Qu Q Y, Qiu W Q, Zeng D C, et al. Measurement of TiN film substrate interfacial adhesion by scratching[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(2): 184-187.
[2]Nothhelfer-Richter R, Klinke E, Eisenbach C D. Evaluation of the scratch resistance with nano-and multiple scratching methods[J]. Macromolecular Sympo-sia, 2015, 187(1): 853-860.
[3]Ange-Therese A, Randall N X, Franz-Josef U. Experi-mental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals[J]. Journal of Materials Research, 2012, 27(2): 9.
[4]Akono A T, Ulm F J. Scratch test model for the deter-mination of fracture toughness [J]. Engineering Fracture Mechanics, 2011, 78(2): 334-342.
[5]Beegan D, Chowdhury S, Laugier M T.
Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates[J]. Surface & Coatings Technology, 2007, 201(12): 5804-5808.
[6]张亚锋, 何洪途, 余家欣, 等. 用于ICF的三种典型光学玻璃的AFM纳米划痕行为研究[J]. 摩擦学学报, 2018, 38(3): 349-355.
Zhang Y F, He H T, Yu J X, et al. AFM nanoscratch behaviors of three optical glasses used in ICF[J]. Tribology, 2018, 38(3): 349-355.
[7]Xiao J K, Zhang L, Zhou K C, et al. Microscratch behavior of copper-graphite composites[J]. Tribology International, 2013, 57(57): 38-45.
[8]Tseng A A. A comparison study of scratch and wear properties using atomic force microscopy[J]. Applied Surface Science, 2010, 256(13): 4246-4252.
[9]Blau P J. Four great challenges confronting our unders-tanding and modeling of sliding friction[J]. Tribology, 1998, 34(34): 117-128.
[10]Gao C H, Liu M. Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter[J]. Tribology Letters, 2019, 67(8):s11249-018-1124-9.
[11]孙浩, 杨景明, 呼子宇, 等. 基于改进鱼群算法的铝热连轧摩擦系数模型研究[J]. 计量学报, 2016, 37(1): 53-55.
Sun H, Yang J M, Hu Z Y, et al. Study on friction coefficient of aluminum hot rolling model based on improved fish swarm algorithm[J]. Acta Metrologica Sinica, 2016, 37(01): 53-55.
[12]刘晓红, 卢小伟, 何乃如, 等. 退火温度对氧化铬薄膜结构和高温摩擦学性能的影响[J]. 摩擦学学报, 2019, 39(2): 164-170.
Liu X H, Lu X W, He N R, et al. Influence of annealing temperature on structure and high temperature tribological properties of chromium oxide films [J]. Tribology, 2019, 39(2): 164-170.
[13]马晨波, 朱华, 张文谦, 等. 往复条件下织构表面的摩擦学性能研究[J]. 摩擦学学报, 2011, 31(1): 50-55.
Ma C B, Zhu H, Zhang W Q, et al. Tribological property of textured surface under reciprocating motion[J]. Tribology, 2011, 31(1): 50-55.
[14]郑远谋, 郑化权. 机械加工对金属材料硬度测试数据的影响[J]. 计量学报, 1993, 14(1): 62-66.
Zheng Y M, Zheng H Q. Influence of machining on hardness tests data of metal materials[J]. Acta Metro-logica Sinica, 1993, 14(1): 62-66.
[15]褚巍, 赵学增, 王凌, 等. 使用AFM测试纳米尺度线宽的不确定度研究[J]. 计量学报, 2005, 26(2): 120-124.
Chu W, Zhao X Z, Wang L, et al. Uncertainty in Nano-scale line width measurements using atomic force microscope [J]. Acta Metrologica Sinica, 2005, 26(2): 120-124.
[16]Torrance A A. Using profilometry for the quantitative assessment of tribological function: PC-based software for friction and wear prediction[J]. Wear, 1995, 181-183(1): 397-404.
[17]Menezes P L, Kishore, Kailas S V, et al. Influence of tilt angle of plate on friction and transfer layer—A study of aluminium pin sliding against steel plate [J]. Tribology International, 2010, 43(5-6): 897-905.
[18]李晓兵, 陶兴付, 杨浩, 等. 较浅压入下针尖曲率半径对纳米压入硬度影响研究[J]. 计量学报, 2017, 38(6): 713-716.
Li X B, Tao X F, Yang H, et al. Study on different curvature radius tips on the nanoindentation hardness at super low depth[J]. Acta Metrologica Sinica, 2017, 38(6): 713-716.
[19]王新伟, 陶兴付,李旭,等.极浅压入下纳米压痕仪针尖面积函数校准方法的研究[J].计量学报,2017,38(5):593-597.
Wang X W, Tao X F, Li X, et al. Study on the calibration method of the tip area function of the nanoindenter at super low depth [J]. Acta Metrologica Sinica, 2017, 38(05):593-597.
[20]黎正伟, 陶兴付, 树学峰, 等. 纳米压痕仪的压头面积函数校准方法的比较研究[J]. 计量学报, 2015, 36(4): 403-407.
Li Z W, Tao X F, Shu X F, et al. Comparative study on the calibration methods of the indenter area function of the instrumented nanoindentation[J]. Acta Metrolo-gica Sinica, 2015, 36(4): 403-407.
[20]Shi C L, Zhao H W, Huang H, et al. Effects of Inden-ter Tilt on Nanoindentation Results of Fused Silica: an Investigation by Finite Element Analysis[J]. Materials Transactions, 2013, 54(6): 958-963.
[21]Shi C L, Zhao H W, Huang H, et al. Effects of probe tilt on nanoscratch results: An investigation by finite element analysis[J]. Tribology International, 2013, 60(7): 64-69.
[22]钟月曦. 划痕测试影响因素分析与实验研究[D]. 长春: 吉林大学, 2018.
[23]Kashani M S, Madhavan V. Analysis and correction of the effect of sample tilt on results of nanoindentation[J]. Acta Materialia, 2011, 59(3): 883-895.
[24]Xu Z H, Li X. Effect of sample tilt on nanoindentation behaviour of materials[J]. Philosophical Magazine, 2007, 87(16): 2299-2312.
[25]朱光宇, 董翔宇, 高诚辉, 等. 试样倾斜对熔融石英硅三棱锥纳米压痕测试的影响[J]. 计量学报, 2019, 40(2): 289-294.
Zhu G Y, Dong X Y, Gao C H, et al. Effects of sample tilt on Berkovich nanoindentation test of fused silica[J]. Acta Metrologica Sinica, 2019, 40(2): 289-294.
[26]Shafirstein G, Gee M G, Osgerby S, et al. Error Analysis In Nanoindentation [J]. MRS Proceedings, 1994, 356: 717.
[27]刘明,严富文,高诚辉. 法向载荷对紫铜的微米划痕测试的影响[J]. 计量学报, 2020, 41(9): 1095-1101.
Liu M, Yan F W, Gao C H. Effect of Normal Load on Microscratch Test of Copper[J]. Acta Metrologica Sinica, 2020, 41(9): 1095-1101.
[28]Gao C H, Liu M. Characterization of spherical indenter with fused silica under small deformation by Hertzian relation and Oliver and Pharrs method[J]. Vacuum, 2018, 153.
[29]Huang L Y, Xu K W, Lu J. Evaluation of scratch resistance of diamond-like carbon films on Ti alloy substrate by nano-scratch technique[J]. Diamond and Related Materials, 2002, 11(8): 1505-1510.
[30]Gao C H, Liu M. Effect of sample tilt on measurement of friction coefficient by constant-load scratch testing of copper with a spherical indenter[J]. Journal of Testing and Evaluation, 2020, 48(2):20180719.
[31]Jiang H, Browning R, Fincher J, et al. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins [J]. Applied Surface Science, 2008, 254(15): 4494-4499.
[32]Yamaguchi T, Sugawara T, Takahashi M, et al. Dry sliding friction of ethylene vinyl acetate blocks: Effect of the porosity[J]. Tribology International, 2017, 116: 264-271.
[33]Byerlee J D. The mechanics of stick-slip[J]. Tectonop-hysics, 1970, 9(5): 475-486.
[34]Zhang J, Wei Y, Sun T, et al. Twin boundary spacing-dependent friction in nanotwinned copper[J]. Physical Review B, 2012, 85(5): 054109.
[35]Menezes P L, Kishore, Kailas S, et al. Influence of tilt angle of plate on friction and transfer layer—A study of aluminium pin sliding against steel plate [J]. Tribology International, 2010, 43(5): 897-905.
[36]Liu S W, Wang H P, Xu Q, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere[J]. Nature Communica-tions, 2017, 8: 14029.
[37]Hervé Pelletier, Gauthier C, Schirrer R. Influence of the friction coefficient on the contact geometry during scratch onto amorphous polymers[J]. Wear, 2010, 268(9): 1157-1169.
[38]Gao C H, Yao L G, Zheng R Y, et al. Effect of sample tilt on spherical indentation of an elastic solid[J]. Journal of Testing and Evaluation, 2017, 47(2):2596-2612.
[39]Bowden F P, Tabor D. The friction and lubrication of solids[J]. American Journal of Physics, 1951, 19(7): 428. |
|
|
|