|
|
Research on Model Temperature Prediction Method Based on Fireworks Algorithm and Long and Short Time Memory Network |
ZHANG Dian-fan1,LI Zi-hao2,CHENG Shu-hong2 |
1. School of Vehicles and Energy, Yanshan University, Qinhuangdao, Hebei 066004, China
2. School of Electrical Engineering, Yanshan University, Qinhuangdao Hebei 066004, China |
|
|
Abstract Aiming at the problems of low precision of mold temperature and difficulty in selecting network parameters, based on fireworks algorithm to optimize the long and short time memory network, a mold temperature prediction model is proposed, which provides a basis for automatic control of casting mold temperature. Firstly, according to the production casting process, the main variables affecting the casting system are selected. The grey relational analysis is used to obtain the grey correlation degree of each variable and remove the small correlation degree, and the data set of the mold temperature influence factor variable is established. Secondly, the fireworks algorithm is used to optimize the long and short time memory network to establish a mold temperature prediction model. Finally, the prediction results are compared with BP neural network and long-term short-term networks. Experiments show that the absolute error of the model temperature prediction method based on the long-term and short-term memory network optimized by the firework algorithm is less than 2.4℃ and the mean absolute percentage error is less than 0.12.
|
Received: 10 December 2019
Published: 08 June 2020
|
|
|
|
|
[1]Javahery M, Abbasi M. Simulation of casting process: case study on the gating and feeding design for outlet diaphragms of iron ore ball mill[J]. Heat and Mass Transfer, 2019, 55(7): 1959-1967.
[2]Kong Y, Chen D, Liu Q, et al. Research on the On-Line Simulation of a Three-Dimensional Temperature Field Model of Slab Continuous Casting[J]. Steel Research International, 2018, 89(8): 1800091.
[3]Fernandes C, Pontes A J, Viana J C, et al. Modeling and Optimization of the Injection-Molding Process: A Review[J]. Advances in Polymer Technology, 2018, 37(2): 429-449.
[4]李宁, 朱培浩, 胡亚辉, 等. 铝合金轮毂低压铸造的数值分析研究[J]. 铸造技术, 2017, 38(6): 1482-1486.
Li N, Zhu P H, Hu Y H, et al. Numerical analysis of low pressure casting of aluminum alloy wheels [J]. Casting Technology, 2017, 38(6): 1482-1486.
[5]范伟, 林瑜阳, 李钟慎. 基于 BP 神经网络的压电陶瓷蠕变预测[J]. 计量学报, 2017, 38(4): 429-434.
Fan W, Lin Y Y, Li Z S. Creep prediction of piezoelectric ceramics based on BP neural network [J]. Acta Metrologica Sinica, 2017, 38(4): 429-434.
[6]张淑清, 任爽, 陈荣飞, 等. 基于大数据简约及PCA改进RBF网络的短期电力负荷预测[J]. 计量学报, 2018, 39(3): 392-396.
Zhang S Q, Ren S, Chen R F, et al. Short-term power load forecasting of RBF network based on big data simplicity and PCA improvement [J]. Acta Metrologica Sinica, 2018, 39(3): 392-396.
[7]牛培峰, 史春见, 刘楠, 等. 基于GSA-PELM的锅炉NOx预测模型[J]. 计量学报, 2018, 39(5): 741-746.
Niu P F, Shi C J, Liu N, et al. Boiler NOx prediction model based on GSA-PELM [J]. Acta Metrologica Sinica, 2018, 39(5): 741-746.
[8]孙宪萍, 杨兵, 刘强强, 等. 基于BP神经网络与遗传算法的温挤压模具优化设计[J]. 润滑与密封, 2017, 42(4): 84-88.
Sun X P, Yang B, Liu Q Q, et al. Optimization design of warm extrusion die based on BP neural network and genetic algorithm [J]. Lubrication Engineering, 2017, 42(4): 84-88.
[9]Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2016, 28(10): 2222-2232.
[10]Liang X, Shen X, Feng J, et al. Semantic object parsing with graph lstm[C]//European Conference on Computer Vision. Amsterdam, Holland, 2016: 125-143.
[11]Kim J Y, El-Khamy M, Lee J W. Residual LSTM: Design of a deep recurrent architecture for distant speech recognition[R]. Ithaca: Cornell University, arXiv e-prints, arXiv:1701.03360, 2017.
[12]Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]//Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. California USA, 2017: 75-84.
[13]任智慧, 徐浩煜, 封松林, 等. 基于 LSTM 网络的序列标注中文分词法[J]. 计算机应用研究, 2017, 34(5): 1321-1324.
Ren Z Z, Xu H Y, Feng S L, et al. Chinese word segmentation based on sequence labeling based on LSTM network [J]. Journal of Computer Applications, 2017, 34(5): 1321-1324.
[14]刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8): 2041-2046.
Liu S F, Cai H, Yang Y J, et al. Research progress of grey relational analysis model [J]. Systems Engineering Theory & Practice, 2013, 33(8): 2041-2046.
[15]刘彬, 赵朋程, 高伟, 等. 基于粒子群算法与连续型深度信念网络的水泥熟料游离氧化钙预测[J]. 计量学报, 2018, 39(3): 420-424.
Liu B, Zhao P C, Gao W, et al. Prediction of free calcium oxide in cement clinker based on particle swarm optimization and continuous deep belief network [J]. Acta Metrologica Sinica, 2018, 39(3): 420-424.
[16]Tan Y, Zhu Y. Fireworks algorithm for optimization[C]//International conference in swarm intelligence. Berlin, Heidelberg, 2010: 355-364.
[17]Tuba E, Tuba M, Dolicanin E. Adjusted fireworks algorithm applied to retinal image registration[J]. Studies in Informatics and Control, 2017, 26(1): 33-42. |
|
|
|