|
|
Study on the Realization of Gallium Melting Point Plateau |
LI Li-feng1,2, LI Rui1, YAN Xiao-ke2, WANG Ning2, HE Pei3 |
1.Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2.National Institute of Metrology, Beijing 100029, China
3.University of Science & Technology Beijing, Beijing 100083, China |
|
|
Abstract The gallium melting point is an important defining fixed point in the International Temperature Scale of 1990 (ITS-90) and plays a crucial role in temperature measurement researche. When the phase transition of the high-purity gallium from the liquid state to the solid state happens, the volume expansion is about 3.1%, which can result in the rupture of the conventional glass container of the gallium point cells during the freezing process. In order to solve this problem, a gallium melting point device was developed with a metal shell. Effects of realization methods and devices on the gallium melting plateaus were carried out. At the same time, a comparison was conducted between a similar foreign device and the developed cell. The experimental results showed that the temperature difference of the temperatures of the gallium melting point was consistent within of 0.02 mK, which may be attributed to the trace impurities in high-purity gallium samples. The temperature of gallium melting point realized with the outer liquid-solid interface method was 0.09 mK lower than that of the temperature obtained by the two-liquid-solid interface method. Effects of the realization apparatus on the gallium melting plateaus were small.
|
Received: 22 August 2019
|
|
|
|
|
1 王鹏,闫小克,蒲玲,等. 套管对水三相点的影响研究[J]. 计量学报, 2016, 37(1): 24-26. WangP,YanX K,PuL,et al. Research on the Effects of Bushing on the Triple Point of Water[J].Acta Metrologica Sinica, 2016, 37(1): 24-26.
2 朱鹏飞,屈继峰,孙建平,等. 基于闭环制冷机的平衡氢三相点复现装置[J]. 计量学报,2018,39(1):28-32. ZhuP F,QuJ F,SunJ P,et al. An Automated System for Realizing the Triple Point of Equilibrium Hydrogen Based on Closed-cycle Refrigerator[J].Acta Metrologica Sinica, 2018, 39(1): 28-32.
3 周贞宇,屈继峰,周琨荔,等. 基于噪声温度计的铟凝固点热力学温度研究[J]. 计量学报, 2019, 40(5): 804-809. ZhouZ Y,QuJ F,ZouK L,et al.Thermodynamic Temperature Measurement of the Indium Freezing Point with Johnson Noise Thermometry[J].Acta Metrologica Sinica, 2019, 40(5): 804-809.
4 苏金荣, 车凤金. 镓熔点容器[J]. 现代计量测试, 1994,(3):30-31.
5 闫小克. 一种新型结构的镓三相点容器[J]. 计量技术, 2004, (11):18-20.
6 闫小克, 邱萍, 瞿咏梅, 等. 一种新的更为简单的制作镓熔点容器的方法[J]. 现代计量测试, 2002, (2):5-7.
7 文平, 郝小鹏, 孙建平, 等. 基于微型镓基共晶固定点的温度传感器在轨校准方法研究[J]. 计量学报, 2019, 40(4):595-602. WenP, HaoX P, SunJ P, et al. On-orbit Calibration of Temperature Sensor Based on Miniature Gallium-based Alloy Fixed Point [J]. Acta Metrologica Sinica, 2019, 40(4): 595-602.
8 徐春媛, 夏蔡娟, 郝小鹏, 等. 准绝热法微型镓固定点相变特性研究[J]. 计量学报, 2017, 38(1):19-22. XuC Y, XiaC J, HaoX P, et al. Research on Phase Change Characteristic of Miniature Gallium Fixed-point Using Quasi-adiabatic Measurement Method [J]. Acta Metrologica Sinica, 2017, 38(1): 19-22.
9 闫小克, 邱萍, 瞿咏梅, 等. 镓三相点的复现[J]. 现代计量测试, 2001,(3):34-39.
10 YanX K, QiuP, DuanY N, et al. NIM Realizationof the Gallium Triple Point[J]. AIP Conference Proceedings, 2003, 684(1):237-242.
11 闫小克, 张哲, 王玉兰. 不同复现方法对镓熔点温度的影响[J]. 计量技术, 2004, (5):18-20.
12 YanX K, DuanY N, ZhangJ T, et al. Automated Realization of the Gallium Melting and Triple Points[C]//Proceedings of the Ninth International Temperature Symposium. Los Angeles, California,US, 2014: 237-242.
13 SteurP P M, DematteisR. Some Curious Results with a Gallium Fixed-Point Cell[J]. International Journal of Thermophysics, 2011, 32(1/2):285-292.
14 WidiatmoJ V, SaitoI, YamazawaK. Construction of Gallium Point at NMIJ[J]. International Journal of Thermophysics, 2017, 38(3): Article 42.
15 RanostajJuraj, DurisStanislav, KnorovaRenata, et al. New SMU Gallium Fixed-Point Cells[J]. International Journal of Thermophysics, 2011, 32(7/8):1535-1543.
16 BojkovskiJ, HitiM, BatageljV. New approach in filling of fixed-point cells:case study of the melting point of gallium[J]. International Journal of Thermophysics, 2008, 29(1):119-125.
17 StrouseG F. NIST Realization of the ITS-90 Gallium Fixed Point[R]. NIST, 2005.
18 StrouseG F. NIST assessment of ITS-90 non-uniqueness for 25.5 ohm SPRTs at gallium, indium, and cadmium fixed points[R]. Institute for Telecommunication Sciences FY 2007 Technical Progress Report, 2008:1-4.
19 方信昀, 胡涵星, 周斌. 对SPRT各固定点阻值的静压修正公式的推导验证与解读[J]. 工业计量, 2014, 24(6):60-61. FangX Y, HuH X, ZhouB. Derivation and interpretation of the static pressure correction formula for the fixed point resistance of SPRT [J]. Industrial Measurement, 2014, 24(6): 60-61.
20 瞿咏梅. 标准铂电阻温度计在0~30℃范围内的不确定度评定[J]. 计量学报, 2001, 22(1):40-45. GuoY M. Evaluation of Uncertainty of Standard Platinum Resistance Thermometer in the Temperature Range from 0 to 30℃ [J]. Acta Metrologica Sinica, 2001, 22(1): 40-45. |
|
|
|