|
|
Comparison among Algorithms for International Atomic Time |
WANG Rui1,YUAN Jing1,BAN Ya1,YANG Fan1,LUO Hao1,JIANG Li1,LUO Ya-xiong2 |
1.Chongqing Measure Quality Detection Institute, Chongqing401123, China
2.cole Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland |
|
|
Abstract The algorithm for the international atomic time(TAI) is an important factor to guarantee the reliability, long-term frequency stability, frequency accuracy and accessibility of the scale. Several classical and most popular algorithms of atomic time scale were reviewed and introduced . ALGOS, Kalman, and AT1 algorithms were explained and mathematically analyzed. By comparing these three algorithms, it was concluded that main idea of ALGOS and AT1 is weighting average. AT1 is a real-time scale and ALGOS is a deferred-time scale. The influence of noises can be better dealt with by Kalman and Kalman is more applicable for satellite navigation system.
|
|
|
|
|
|
[1]Panfilo G, Arias E F. Algorithms for international atomic time[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(1): 140-150.
[2]Guinot B, Thomas C. Establishment of international atomic time: Annual Report of the BIPM Time Section 1[R].BIPM,1988.
[3]Thomas C, Wolf P, Tavella P. Time Scales:BIPM Monographie[R]. BIPM, 1994.
[4]Tavella P, Thomas C. Comparative study of time scale algorithms[J]. Metrologia, 1991, 28(2): 57-63.
[5]Panfilo G, Harmegnies A, Tisserand L. A new prediction algorithm for EAL[C]//IEEE. Proceedings of EFTF-IFCS . San Francisco,USA, 2011.
[6]高喆. 改进的ALGOS算法在TA(NTSC)归算中的应用研究[D]. 北京: 中国科学院研究生院, 2016.
[7]Azoubib J. A Revised Way of Fixing an Upper Limit to Clock Weights in TAI computation[C]// 32nd PTTI Meeting. Reston, USA, 2001.
[8]Panfilo G, Harmegnies A, Tisserand L. A new prediction algorithm for the generation of International Atomic Time[J]. Metrologia. 2012, 49(1): 49-56.
[9]Panfilo G, Harmegnies A, Tisserand L. A new weighting procedure for UTC[J]. Metrologia. 2014, 51(3): 285-292
[10]Barnes J A, Jones R H, Tryon P V, et al. Stochastic Model for Atomic Clocks[C]// Proceeding of 14th PTTI Appl .1992:295-304.
[11]李变, 李海波, 高玉平. 原子时的Kalman算法[C]// 2009时间频率学术会议. 成都, 2009: 527-532.
[12]王玉琢, 张爱敏, 张越, 等. 一种原子钟频率稳定度的估计方法[J]. 计量学报, 2019, 39(3): 397-400.
Wang Y Z, Zhang A M, Zhang Y, et al. A Method for Estimating Frequency Stability of Atomic Clock[J]. Acta Metrologica Sinica, 2019, 39(3): 397-400.
[13]张莉莉, 高源, 朱江淼, 等. AT1原子时算法的研究[J]. 电子测量技术, 2007, 30(11): 20-24.
Zhang L L, Gao Y, Zhu J M. Research on AT1 atomic time algorithm[J]. Electronic Measurement Technology, 2007, 30(11): 20-24.
[14]朱江淼, 陈烨, 高源, 等. 原子钟钟差预测不确定度的建模与分析[J]. 计量学报, 2019, 40(4): 714-720.
Zhu J M, Chen Y, Gao Y. Modeling and Analysis pf Prediction Uncertainty of Clock Difference in Atomic Clock[J]. Acta Metrologica Sinica, 2019, 40(4): 714-720. |
|
|
|