[1]Ali J B, Fnaiech N, Saidi L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals [J]. Applied Acoustics, 2015, 89: 16-27.
[2]马增强, 李亚超, 刘政, 等. 基于变分模态分解和Teager能量算子的滚动轴承故障特征提取 [J]. 振动与冲击, 2016, 35(13): 134-139.
Ma Z Q, Li Y C, Liu Z, et al. Rolling bearingsfault feature extraction based on variational mode decomposition and Teager energy operator [J]. Shock and Vibration, 2016, 35(13): 134-139.
[3]张云强, 张培林, 王怀光, 等. 结合VMD和Volterra预测模型的轴承振动信号特征提取 [J]. 振动与冲击, 2018, 37(3): 129-135, 152.
Zhang Y Q, Zhang P L, Wang H G, et al. Feature extraction method for rolling bearing vibration signals based on VMD and Volterra prediction model [J]. Shock and Vibration, 2018, 37(3): 129-135, 152.
[4]郑小霞, 周国旺, 任浩翰, 等. 基于变分模态分解和排列熵的滚动轴承故障诊断 [J]. 振动与冲击, 2017, 36(22): 22-28.
Zheng X X, Zhou G W, Ren H H, et al. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy [J]. Shock and Vibration, 2017, 36(22): 22-28.
[5]Shen C, Wang D, Kong F, et al. Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier [J]. Measurement, 2013, 46(4): 1551-1564.
[6]Ao H L, Cheng J, Li K, et al. A Roller Bearing Fault Diagnosis Method Based on LCD Energy Entropy and ACROA-SVM [J]. Shock and Vibration, 2014: Article ID 825825.
[7]Liu Z, Cao H, Chen X, et al. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings [J]. Neuro computing, 2013, 99(1): 399-410.
[8]张淑清,邢婷婷,何红梅,等. 基于VMD及广义分形维数矩阵的滚动轴承故障诊断[J]. 计量学报,2017,38(4): 439-443.
Zhang S Q, Xing T T, He H M, et al. Bearing Fault Diagnosis Method Based on VMD and Generalized
Fractal Dimension Matrix[J]. Acta Metrologica Sinica, 2017, 38(4): 439-443.
[9]付秀伟,高兴泉. 基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法[J]. 计量学报,2018,39(5): 688-692.
Fu X W, Gao X Q. Rolling Bearing Fault Diagnosis Based on FDM and Singular Value Difference Spectrum [J]. Acta Metrologica Sinica, 2018, 39(5): 688-692.
[10]Hu J, Zhang L, Liang W, et al. Incipient mechanical fault detection based on multifractal and MTS methods [J]. Petroleum Science, 2009, 6(2): 208-216.
[11]Wang Z, Lu C, Wang Z L, et al. Fault Diagnosis and health assessment for bearings using the Mahalanobis-Taguchi system based on EMD-SVD [J]. Transactions of the Institute of Measurement and Control, 2013, 35(6): 798-807.
[12]剡昌锋, 朱涛, 吴黎晓, 等. 基于马田系统的滚动轴承初始故障检测和状态监测 [J]. 振动与冲击, 2017, 36(12): 155-162, 188.
Yan C F, Zhu T, Wu L X, et al. Incipient fault detection and condition monitoring of rolling bearings by using the Mahalanobis-Taguchi System [J]. Shock and Vibration, 2017, 36(12): 155-162, 188.
[13]陈俊洵, 程龙生, 胡绍林, 等. 基于EMD的改进马田系统的滚动轴承故障诊断 [J]. 振动与冲击, 2017, 36(5): 151-156.
Chen J X, Cheng L S, Hu S L, et al. Fault diagnosis of rolling bearings using modified Mahalanobis-Taguchi system based on EMD [J]. Shock and Vibration, 2017, 36(5): 151-156.
[14]陈俊洵, 程龙生, 余慧, 等. 基于EMD-SVD与马田系统的复杂系统健康状态评估 [J]. 系统工程与电子技术, 2017, 39(7): 1542-1548.
Chen J X, Cheng L S, Yu H, et al. Health status assessment for complex systems based on EMD-SVD and Mahalanobis-Taguchi system [J]. Systems Engineering and Electronics, 2017, 39(7): 1542-1548. |