|
|
Fault Diagnosis of Rolling Bearing Based on Sparse Representation of Signals and Transient Impulse Signal Multifeature Extraction |
MENG Zong,YIN Na,LI Jing |
Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract A multi-feature extraction method based on IChirplet atom is proposed to solve the problem of sparse representation and feature extraction of transient impact signal. According to the characteristics of the fault signal, a dictionary which is made up of IChirplet atoms is built and a improved pariticle swarm optimization algorithm is presented for searching the best atoms. And then sensitive parameters in time-frequency domain of the IChirplet atomics and characteristics of the reconstructed signal are extracted as the characteristic parameter. Finally, the fault classification is achieved by PSO_SVM. The experiment proves that the IChirplet atom can match the fault signal of rolling bearing well, and the multiple characteristics can better reflect fault information and the bearing failure type can be judged more accurately.
|
Received: 03 May 2018
Published: 01 September 2019
|
|
Corresponding Authors:
Zong MENG
E-mail: mzysu@ysu.edu.cn
|
|
|
|
[1]何正嘉, 陈进, 王太勇, 等. 机械故障诊断理论及应用[M]. 北京:高等教育出版社, 2010.
[2]孟宗, 王晓燕, 周明军, 等. 基于Gabor变换和盲源分离的旋转机械故障诊断方法[J]. 计量学报, 2016, 37(5): 499-504.
Meng Z, Wang X Y, Zhou M J, et al. Method of rotating machinery fault diagnosis based on Gabor transform and blind source separation [J]. Acta Metrology Sinica, 2016, 37(5): 499-504.
[3]朱会杰, 王新晴, 芮挺, 等. 基于频域信号的稀疏编码在机械故障诊断中的应用[J]. 振动与冲击, 2015, 34(21): 59-64.
Zhu H J, Wang X Q, Rui T, et al. Application of sparse coding based on frequency domain signals in machinery fault diagnosis [J]. Journal of Vibration and Shock, 2015, 34(21): 59-64.
[4]孟宗, 邢婷婷, 张圆圆, 等. 基于关联维数和线段聚类的滚动轴承故障诊断[J]. 计量学报, 2019, 40(1): 100-105.
Meng Z, Xing T T, Zhang Y Y, et al. Fault Diagnosis of Rolling Bearing Based on Correlation Dimension and Segment Clustering[J]. Acta Metrologica Sinica, 2019, 40(1): 100-105.
[5]王栋, 丁雪娟. 基于包络解调随机共振和CEEMD的机械早期微弱故障诊断方法研究[J]. 计量学报, 2016, 37(2): 185-190.
Wang D, Ding X J. Study on mechanical early weak fault diagnosis method based on CEEMD and envelope demodulation stochastic resonance [J]. Acta Metrology Sinica, 2016, 37(2): 185-190.
[6]Stange G, Nguyen T. Wavelet and Filter Banks [M]. Wellesley-Cambridge Press, 1996.
[7]康晨晖, 崔玲丽, 王婧, 等. 基于信号特征的复合字典多原子匹配算法研究[J]. 机械工程学报, 2012, 48(12): 1-6.
Kang C H, Cui L L, Wang J, et al. Research on the composite dictionary multi-atoms matching algorithm based on the signal character [J]. Journal of Mechanical Engineering, 2012, 48(12): 1-6.
[8]时培明, 苏翠娇, 赵娜, 等. 基于AMD和自适应随机共振的旋转机械故障诊断方法研究[J]. 计量学报, 2017, 38(4): 439-443.
Shi P M, Su C J, Zhao N, et al. Study on fault diagnosis method for rotating machinery based on adaptive stochastic resonance and AMD [J]. Acta Metrology Sinica, 2017, 38(4): 439-443.
[9]Liu R N, Yang B Y, Zhang X L, et al. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis[J]. Mechanical Systems And Signal Processing, 2016, (75): 345-370.
[10]Ariananda D D, Jamali-Rad H, TAN Zi, et al. Deterministic Fourier-based dictionary design for sparse reconstruction [C] // Sensor Array and Multichannel Signal Processing Workshop(SAM). Rio de Janerio, Brazil, 2016: 1-5.
[11]张淑清, 胡永涛, 王世豪, 等. 基于混合采样的压缩感知重构算法[J]. 计量学报, 2017, 38(1): 69-72.
Zhang S Q, Hu Y T, Wang S H, et al. Compressed sensing reconstruction algorithm based on hybrid sampling [J]. Acta Metrology Sinica, 2017, 38(1): 69-72.
[12]Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1396.
[13]裴立业, 江桦, 李明. 一种基于能量的压缩感知稀疏度估计算法[J]. 电子学报, 2017, 45(2): 285-290.
Pei L Y, Jiang H, Li M. A sparsity order estimation algorithm based on measured signals energy [J]. Acta Electronica Sinica, 2017, 45(2): 285-290.
[14]孟宗, 李晶, 龙海峰, 等. 基于压缩信息特征提取的滚动轴承故障诊断方法[J]. 中国机械工程, 2017, 28(7): 806-812.
Meng Z, Li J, Long H F, et al. Fault diagnosis method for rolling bearing based on compression information feature extraction [J]. China Mechanical Engineering, 2017, 28(7): 806-812.
[15]呙鹏程, 王星, 程嗣怡, 等. 改进Chirplet时频原子的非线性调频信号分解[J]. 西安电子科技大学学报, 2018, 45(1): 123-128.
Guo P C, Wang X, Cheng S Y, et al. Non-linear frequency modulated signal decomposition on improved chirplet time-frequency atom [J]. Xi'an Journal of Xidian University, 2018, 45(1): 123-128. |
|
|
|