[1]Yuan W Z, Cui X H, Li Y, et al. Uncertainty analysis and evaluation of a WR-28 (26.5 to 40GHz) millimeter-wave power standard [C] //2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). Ottawa, Canada, 2016.
[2]崔孝海, 李勇, 张淑溢, 等. 毫米波WR-15(50~75GHz)国家功率基准的研制[J]. 计量学报,2014,35(4): 378-381.
Cui X H, Li Y, Zhang S Y, et al. Design and Development of the WR-15 (50~75) GHz Millimeter-wave Power National Primary Standard[J].Acta Metrologica Sinica, 2014, 35(4): 378-381.
[3]钟青,袁文泽,史艳平,等. 毫米波功率计量标准器芯片的研制[J]. 计量学报, 2019, 40(2): 329-332.
Zhong Q,Yuan W Z,Shi Y P,et al. Study on Millimeter Wave Power Standard Devices[J]. Acta Metrologica Sinica, 2019, 40(2): 329-332.
[4]Kwon J Y, Kang T W, Kang N W. V-Band Waveguide Microcalorimeter for Millimeter-Wave Power Standards [J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(6): 1598-1604.
[5]Kinoshita M, Inoue T, Shimaoka K, et al. Precise Power Measurement With a Single-Mode Waveguide Calorimeter in the 220~330GHz Frequency Range [J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1451-1460.
[6]Judaschke R H, Kuhlmann K, Reichel T, et al. A w-band thermoelectric power transfer standard [C] //29th Conference on Precision Electromagnetic Measurements (CPEM 2014). Rio de Janeiro, Brazil, 2014.
[7]Vogt T, Gross C, Han J, et al. Efficient microwave-to-optical conversion using Rydberg atoms [J]. Physical Review A, 2019, 99(2): 23827-23832.
[8]Stock M. The Revision of the SI-Towards an International System of Units Based on Defining Constants [J]. Measurement Techniques, 2018, 60(12): 1169-1177.
[9]黄巍, 梁振涛, 杜炎雄, 等. 基于里德堡原子的电场测量 [J]. 物理学报, 2015, 64(16): 160702-160710.
Huang W, Liang Z T, Du X Y, et al. Rydberg atoms based electrometry [J]. Acta Physica Sinica, 2015, 64(16): 160702-160710.
[10]Crowley T P, Donley E A, Heavner T P. Quantum-based microwave power measurements: Proof-of-concept experiment [J]. Review of scientific instruments, 2004, 75(8): 2575-2580.
[11]Paulusse D C, Rowell N L, Michaud A. Accuracy of an atomic microwave power standard [J]. IEEE transactions on instrumentation and measurement, 2005, 54(2): 692-695.
[12]Kinoshita M, Shimaoka K, Komiyama K. Determination of the microwave field strength using the Rabi oscillation for a new microwave power standard [J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(4): 1114-1119.
[13]Kinoshita M, Shimaoka K, Shimada Y. Optimization of the atomic candle signal for the precise measurement of microwave power [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(6): 1807-1813.
[14]Sun F Y, Jiang Z Y, Qu J F, et al. Tunable microwave magnetic field detection based on Rabi resonance with a single cesium-rubidium hybrid vapor cell [J]. Applied Physics Letters, 2018, 113(16): 164101-164106.
[15]Holloway C L, Simons M T, Kautz M D, et al. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides [J]. Applied Physics Letters, 2018, 113(9): 94101-94106.
[16]Fan H Q, Santosh K, Sheng J T, et al. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields [J]. Physical Review Applied, 2015, 4(4): 44015-44021.
[17]Song Z F, Zhang W F, Wu Q, et al. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement [J]. Sensors, 2018, 18(10): 3205-3218.
[18]Renn M J, Thomson D S, Gallagher T F. Frequency evolution of radiatively assisted collisions of K Rydberg atoms [J]. Physical Review A, 1994, 49(1): 409-420.
[19]Johnk C T A. Engineering electromagnetic fields and waves [M]. New York: John Wiley and Sons, 1975. |