|
|
Rapid Detection of Radioactive Content in Stone by Hand-held γ Radioisotope Identification Device |
LU Xiao-jun,HE Lin-feng,XIN Zhi-wei |
Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China |
|
|
Abstract A rapid measurement method using a handheld gamma radionuclide recogniser to rapidly measure the content of natural radionuclides in stone was proposed. The reference values of the calibration coefficients of 226Ra, 232Th and 40K in the handheld radionuclide recogniser were determined by means of the energy spectrum analysis method of the low background HPGe γ spectrometer. Then the radionuclide gamma spectrum in the stone was measured by the handheld radioisotope identification device (RID). The specific activity of 226Ra, 232Th and 40K in stone was estimated according to the calibration coefficient. The results showed that the maximum deviations between the proposed method and the low background HPGe gamma spectrometer were 25.1%(CRa), -27.2%(CTh), -15.2%(CK) respectively. The proposed method can be applied to the rapid and nondestructive detection of specific activity of gamma radiation in stone samples and the rapid estimation of external radiation dose caused by decorative stone.
|
Received: 11 October 2018
Published: 19 April 2019
|
|
|
|
|
[1]刘重, 肖婧, 陈瑞康. 正确认识天然石材的放射性 [J]. 天津科技, 2010, (3): 110-112.
Liu Z, Xiao J, Chen R K. Correctly Understanding Radioactivity of Natural Stone [J]. Tianjin Science & Technology, 2010, (3): 110-112.
[2]武英伟, 周俊兴. 天然饰面石材分类及其性能技术指标 [J]. 石材, 2004, (7): 30-31.
Wu Y W, Zhou J X. Classification of Natural Decorative Stones and Their Technical Performance [J]. Stone, 2004,(7): 30-31.
[3]唐碧华, 白立新, 王辉东. HPGe γ谱仪体源探测效率与射线能量和体源密度的关系 [J]. 核电子学与探测技术, 2006, 26(5): 683-686.
Tang B H, Bai L X, Wang H D. Relationship of the HPGe γ-spectrometer detection ef ficiency of body source with radial energy and density of body source [J]. Nuclear Electronics & Detection Technology, 2006, 26(5): 683-868.
[4] GB/T11743-89 土壤中放射性核素的γ能谱分析方法 [S]. 北京, 中国标准出版社, 1989.
[5]GB 11713-89 用半导体γ谱仪分析低比活度γ放射性样品的标准方法 [S]. 北京, 中国标准出版社, 1989.
[6]Cresswell A J, Sanderson D C W, Weir A, et al. Mobile gamma spectrometry survey of the Scottish Enterprise Technology Park [R].East Kilbride: Scottish Universities Environmental Research Centre, 2010.
[7]王同利, 陈杰, 雷生学,等. 野外就地测量便携式NaI(Tl) γ谱仪的初步标定及花岗岩标定台的建立 [J]. 核技术, 2008, 31(2): 137-141.
Wang T L, Chen J, Lei S X, et al. Calibration of field ORTEC MicroNomad γ-ray spectrometer for establishing a granite calibration block [J]. Nuclear Techniques, 2008, 31(2): 137-141.
[8]张小林, 张佳媚, 王世联. 建筑材料中天然放射性的γ能谱分析 [J]. 核电子学与探测技术, 2005, 25(3): 330-333.
Zhang X L, Zhang J M, Wang S L. The natural radioactivity measurement in building materials by γ ray spectrometry [J]. Nuclear Electronics & Detection Technology, 2005, 25(3): 330-333.
[9]Caciolli A, Baldoncini M, Bezzon G P, et al. A new FSA approach for in situ γ ray spectroscopy [J]. Sci Total Environ, 2012, 414: 639-645.
[10]Nuccetelli C, Bolzan C. In situ gamma spectroscopy to characterize building materials as radon and thoron sources [J]. Sci Total Environ, 2001, 272(1): 355-360. |
|
|
|