[1]Nerovny N, Zimin V, Fedorchuk S, et al. Representation of light pressure resultant force and moment as a tensor series[J]. Celestial Mechanics & Dynamical Astronomy, 2017, 128(4):483-513.
[2]刘喜斌. 光压的电磁理论和量子理论的探讨[J].赣南师范学院学报, 2001, 6(6):31-33.
Liu X B. Study on Electromagnetism Theory and Quantum Theory of Light Pressure[J]. Journal of Gannan Teachers College, 2001, 6(6):31-33.
[3]Johnson L, Whorton M, Heaton A, et al. NanoSail-D: A solar sail demonstration mission[J]. Acta Astronautica, 2011, 68(5-6): 571-575.
[4]Novitsky D, Afanas'Ev A A, Rubinov A N. Nanoparticle Motion in an Ideal Liquid under the Action of Light Pressure in the Field of a Standing Light Wave[J]. Nonlinear Phenomena in Complex Systems, 2017, 20(2):194-198.
[5]吴建光. 利用光镊研究生物细胞的力学行为[D]. 合肥:中国科学技术大学, 2009.
[6]刘昌霞. 飞秒涡旋光镊操控椭球型微小粒子的理论和实验研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[7]Bryden N, Mccauley M, Westerlund F, et al. Quantifying the DNA binding characteristics of ruthenium based threading intercalator Λ Λ -P with optical tweezers[C]// APS March Meeting. APS March Meeting Abstracts, 2016.
[8]Rajkumar A S, Ali B M J. Microrheology of concentrated DNA solutions using optical tweezers[J]. Bulletin of Materials Science, 2008, 31(3):381-386.
[9]Lebedev P N. Experimental examination of light pressure[J]. Ann der Physik, 1901, 6(433): 1-26.
[10]郑华熾.П.Н.列别捷夫的光压实验[J]. 物理, 1956, 3(3):22-25.
Zheng H C. Light Pressure Experiment of Lebedev P N[J]. Physical, 1956, 3(3):22-25.
[11]Berezanskaya V M, Doskoch I Y, Man’ko M A. Light-Pressure Experiments by P. N. Lebedev and Modern Problems of Optomechanics and Quantum Optics[J]. Journal of Russian Laser Research, 2016, 37(5):425-433.
[12]刘泽刚, 黄耿石, 李振柱, 等. 基于谐振的光压测量[J]. 物理实验, 2017, 37(1):1-6.
Liu Z G, Huang G S, Li Z Z, et al. Measuring Light Pressure Based on Mechanical Resonance[J]. Physics Experimentation, 2017, 37(1):1-6.
[13]杨应平, 陈梦苇, 贾信庭. 四象限光电探测器实验装置的研究与应用[J]. 物理实验, 2014, 34(5):29-32.
Yang Y P, Chen M W, Jia X T. Experimental Device of Four Quadrant Photoelectric Detector[J]. Physics Experimentation, 2014, 34(5):29-32.
[14]陈军, 彭力, 聂云, 等. 基于扭秤原理的非真空环境下光压测量[J]. 大学物理实验, 2017, 30(1):5-9.
Chen J, Peng L, Nie Y, et al. Measuring Light Pressure under Non-vacuum Environment Based on the Principle of Cavendish Torsion Balances Experiment[J]. Physical Experiment of College, 2017, 30(1):5-9.
[15]林曼虹, 黄培灿, 林瑞丰, 等. 利用精密扭秤测量微小电量[J]. 大学物理实验, 2015, 28(110):29-31.
Lin M H, Huang P C, Lin R F, et al. Measurement of Micro-charge by Precision Torsion Balance[J]. Physics Experimentation, 2015, 28(110):29-31.
[16]崔金松, 李成仁, 刘玉凤. 光压观测仪的研制[J]. 物理实验, 1999, 1(1):29-30.
Cui J S, Li C R, Liu Y F. Development of Optical Pressure Observer[J]. Physics Experimentation, 1999, 1(1):29-30.
[17]龙腾, 赵改清, 杜炳清, 等. 应用压电陶瓷测量光压[J].物理实验, 2016, 36(11):20-22.
Long T, Zhao G Q, Du B Q, et al. Measuring Light Pressure Using Piezoelectric Ceramic[J]. Physics Experimentation, 2016, 36(11):20-22.
[18]Nesterov V, Mueller M, Frumin L L, et al. A new facility to realize a nanonewton force standard based on electrostatic methods[J]. Metrologia, 2009, 46(3):277-282.
[19]Nesterov V. A nanonewton force facility and a novel method for measurements of the air and vacuum permittivity at zero frequencies[J]. Measurement Science and Technology, 2009, 20(8): 084012-1-6.
[20]Nesterov V. Facility and methods for the measurement of micro and nano forces in the range below 10-5 N with a resolution of 10-12 N (development concept)[J]. Measurement Science and Technology, 2007, 18(2):360-366.
[21]Nesterov V, Buetefisch S, Koenders L. A nanonewton force facility to test Newton's law of gravity at micro and submicrometer distances[J]. Annalen der Physik, 2013, 525(8-9):728-737.
[22]胡刚. 微纳力值计量标准的研究和溯源体系的建立[J]. 计量学报, 2011,32(5): 450-454.
Hu G. Research on Measurement Standards and Establishment of Traceable Hierarchy of Micro-nano Force Metrology[J]. Acta Metrologica Sinaca, 2011, 32(5): 450-454.
[23]Petrov M P. The Casimir Force and Light Pressure[M]. America: Optical Society of America, 2007.
[24]Petrov V M, Petter J, Petrov M P, et al. Nano-optomechanics: From the light pressure to the Casimir force[J]. Materials Science & Engineering C, 2007, 27(5-8):981-984.
[25]Petrov V M, Khomenko A V, Garcia M A. Light pressure detection by two-wave mixing in the photorefractive BaTiO3: Co crystal[J]. Физико-математические науки, 2014, 189(1):61-65.
[26]赵静, 林鸿湘, 邱棠,等. 基于马赫曾德干涉光路的光压测量装置设计[J]. 光子学报, 2016, 45(6):68-74.
Zhao J, Lin H X, Qiu Tang, et al. Light Pressure Measuring Based on Device of Mach-Zehnder Interference[J]. Acat Photonica Sinica, 2016, 45(6):68-74.
[27]Martens F F. ber eine neue Form des Jaminschen Interferenzrefraktometers[J]. Zeitschrift für Physik, 1930, 61(5-6): 363-367.
[28]Feng B, Deng M, Tang F Q, et al. Automatic Measurement Method of Michelson Interference Fringe[J]. Optics & Optoelectronic Technology, 2015, 13(4):36-40.
[29]王喜连, 李玲, 辛化梅. 散斑干涉条纹图降噪技术比较研究[J]. 现代电子技术, 2015, 38(11):63-66.
Wang X L, Li L, Xin H M. Comparative Study on Denoising Technologies for Speckle Interference Fringe Pattern[J]. Modern Electronics Technique, 2015, 38(11):63-66.
[30]田爱玲, 刘婷, 刘剑, 等. 单幅干涉条纹图的高精度波面重建技术[J]. 红外与激光工程, 2015, 44(4):1203-1207.
Tian A L, Liu T, Liu J, et al. High Precision Wavefront Reconstruction Technology for Single Interferogram[J]. Infrared and Laser Engineering, 2015, 44(4):1203-1207.
[31] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5):288-290.
[32]李银妹, 龚雷, 李迪,等. 光镊技术的研究现况[J]. 中国激光, 2015, 42(1):1-20.
Li Y M, Gong L, Li D, et al. Progress in Optical Tweezers Technology[J]. Chinese Journal of Lasers, 2015, 42(1):1-20.
[33] Fedosov I V, Nefedov I S, Khlebtsov B N, et al. Handling of nanoparticles with light pressure forces[C]. Proceedings of the SPIE, 2007, 6536:65360A-1-7.
[34]钟敏成. 光镊研究分散体系中微粒的运动[D]. 合肥:中国科学技术大学, 2010.
[35]王国庆. 双光阱光镊系统标定及力谱测试研究[D]. 天津:天津大学, 2016.
[36]Zhang L, She W, Peng N, et al. Experimental evidence for Abraham pressure of light[J]. New Journal of Physics, 2015, 17(5):053035-1-12.
[37]Glenzer S H, Macgowan B J, Michel P, et al. Symmetric inertial confinement fusion implosions at ultra-high laser energies[J]. Science, 2010, 327(5970):1228-1231.
[38]She W, Yu J, Feng R. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light[J]. Physical Review Letters, 2008, 101(24):243601-1-4.
[39]Ashkin A, Dziedzic J M. Radiation Pressure on a Free Liquid Surface[J]. Physical Review Letters, 1973, 30(4):139-142.
[40]Casner A, Delville J P. Giant deformations of a liquid-liquid interface induced by the optical radiation pressure[J]. Physical Review Letters, 2001, 87(5):054503-1-4.
[41]Astrath N G, Malacarne L C, Baesso M L, et al. Unravelling the effects of radiation forces in water[J]. Nature Communications, 2014, 5(4363):1-6.
[42]张金琪, 李建美, 路长厚, 等. 激光热效应数值模拟技术研究现状[J]. 机电工程, 2014, 31(11):1371-1378.
Zhang J Q, Li J M, Lu C H, et al. Progress of Numerical Simulation of Laser Thermal Effects[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(11):1371-1378.
[43]简欣, 徐让书, 邵长浩,等. 激光与金属材料相互作用的热效应分析[J]. 沈阳航空航天大学学报, 2014, 31(1):33-36.
Jian X, Xu R S, Shao C H, et al. Thermal Effect Analysis of the Interaction Between Laser and Metal Material[J]. Journal of Shenyang Aerospace University, 2014, 31(1):33-36.
[44]Dowling J P, Milburn G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2003, 361(1809): 1655-1674.
[45]吴勇毅, 陈渊源. 量子革命开启“中国速度”[J].上海信息化, 2017, 1(6):10-14.
Wu Y Y, Chen Y Y. The Quantum Revolution Opens the "China Speed"[J]. Shanghai Informatization, 2017, 1(6):10-14. |