|
|
Study on Fluorescence Spectrometric Detection of Potassium Sorbate Based on CS-SVM |
WANG Shu-tao,ZHU Cai-yun,LIU Ming-xin, PENG Tao,CHENG Qi,KONG De-ming,WANG Yu-tian |
Key Laboratory of Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract By analyzing the fluorescence spectra of potassium sorbate in orange juice solution, it is found that fluorescence spectrum of potassium sorbate has glares where emission wavelength is in the range of 450~510nm when excitation wavelength is at 375nm, which indicates that the fluorescence characteristics of orange juice could interfere with the fluorescence spectrum of potassium sorbate. The model of cuckoo search algorithm (CS) optimizing support vector machine (SVM) is built to train 15 samples and predict the concentration of 7 potassium sorbate samples. The average recovery rate of CS-SVM is 99.07% and the mean square error is 1.21×10-5g/L. The results show that the training process,the average recovery and error of CS-SVM are all better than PSO-SVM and GA-SVM, and that CS-SVM can accurately determine the concentration of potassium sorbate in orange juice solution.
|
Received: 05 July 2017
Published: 05 September 2018
|
|
Fund:the National Natural Science Foundation of China;the National Natural Science Foundation of China |
Corresponding Authors:
Cai-Yun ZHU
E-mail: tydf15138004018@163.com
|
|
|
|
[1]冼志锋.山梨酸钾的合成及应用分析[J].企业科技与发展, 2014,(18): 21-22.
[2]邓新煜.原子荧光光谱法测定食品添加剂山梨酸钾中砷含量[J].中国无机分析化学, 2016,6(4): 8-10.
[3]高云.食醋和酱油中苯甲酸钠和山梨酸钾含量的高效液相色谱法测定[J].科技创新导报, 2013,(17): 124.
[4]纪洁,李秀琴,毛婷. 苹果醋中安赛蜜、山梨酸和日落黄成分分析标准物质的研制[J].计量学报,2017, 38(4): 507-512.
[5]胡丽华.HPLC法同时测定食品中的乙酰磺胺酸钾、苯甲酸、山梨酸、糖精钠[J].中国卫生检验杂志,2013,(7): 1690-1692.
[6]王书涛,陈东营,魏蒙,等.荧光光谱法和PSO-BP神经网络在山梨酸钾浓度检测中的应用[J].中国激光,2015,42(05): 312-318.
[7]徐晓明.SVM参数寻优及其在分类中的应用[D].大连:大连海事大学, 2014.
[8]岑涌,钟萍,罗林开.基于GA-SVM的企业财务困境预测[J].计算机工程.2008,34(07): 223-225.
[9]于明,艾月乔.基于人工蜂群算法的支持向量机参数优化及应用[J].光电子·激光.2012,23(02): 374-378.
[10]孟宗,季艳,谷伟明,等.基于支持向量机和窗函数的DEMD 端点效应抑制方法[J].计量学报,2016, 37(2): 180-184.
[11]杨景明,陈伟明,车海军,等.基于粒子群算法优化支持向量机的铝热连轧机轧制力预报[J].计量学报,2016, 37(1): 71-74.
[12]薛浩然,张珂珩,李斌,等.基于布谷鸟算法和支持向量机的变压器故障诊断[J].电力系统保护与控制,2015, 43(8): 8-13.
[13]胡扬俊,朱纯,陈国庆,等.荧光光谱结合PCA-ED与PLSR方法检测市售橙汁饮品[J].光谱学与光谱分析,2014,34 (8): 2143-2147.
[14]Roodposhti M S, Safarrad T, Shahabi H. Drought sensitivity mapping using two one-class support vector machine algorithms[J].Atmospheric Research, 2017, 193: 73-82.
[15]谭熊,余旭初,秦进春,等.高光谱影像的多核SVM分类[J].仪器仪表学报,2014, 35(2): 405-411.
[16]王健峰,张磊,陈国兴,等.基于改进的网格搜索法的SVM参数优化[J].应用科技,2012, 39(3): 28-31.
[17]徐杨丽,叶春明.改进的布谷鸟算法求解置换流水车间调度问题[J].物流科技,2015, 38(6): 5-8. |
|
|
|