[1]郑宇, 徐东明, 张晖. 圆度误差测量新方法的研究[J]. 长春理工大学学报(自然科学版),2012,35(4):56-59.
[2]岳武陵, 吴勇. 按最大内接圆法评定圆度误差的仿增量算法[J].计量学报,2008,29 (1):26-28.
[3]张春阳, 雷贤卿, 李济顺,等. 基于几何优化的圆度误差评定算法[J]. 机械工程学报,2010,46(12):8-12.
[4]Samuel G L, Shunmugam M S. Evaluation of circularity from coordinate and form data using computational geometric techniques[J]. Precision Engineering,2000,24(3):251-263.
[5]Rossi A, Antonetti M, Barloscio M, et al. Fast genetic algorithm for roundness evaluation by the minimum zone tolerance (MZT) method[J]. Measurement,2011,44(7): 1243-1252.
[6]Murthy T S R, Abdin S Z. Minimum zone evaluation of surface[J]. International Journal of Machine Tool Design and Research,1980, 20 (2):123-136.
[7]Xiong Y L. Computer aided measurement of profile error of complex surfaces and curves: theory and algorithm[J]. International Journal Machine Tools and Manufacture,1990,30(3): 339-357.
[8]Lai J, Chen I H. Minimum zone evaluation of circles and cylinders[J].International Journal of Machine Tools and Manufacture,1995,36 (4):435-451.
[9]Zhu L M, Ding H, Xiong Y L. A steepest descent algorithm for circularity evaluation[J]. Computer Aided Design,2003,35(3):255-265.
[10]Venkaiah N, Shunmugam M S. Evaluation of form data using computational geometric techniques-Part I: Circularity error[J]. International Journal of Machine Tools and Manufacture,2007,47(7-8):1229-1236.
[11]Suen D S, Chang C N. Application of neutral network interval regression method for minimum zone circle roundness[J]. Measurement Science and Technology,1997,8(3):245-252.
[12]Wen X L, Xia Q G , Zhao Y B. An effective genetic algorithm for circularity error unified evaluation[J]. International Journal of Machine Tools and Manufacture,2006,46(14): 1770-1777.
[13]Cui C C, Li B, Huang F G, et al. Genetic algorithm-based form error evaluation[J]. Measurement Science and Technology,2007,18(7): 1818-1822.
[14]温秀兰, 张鹏. 进化策略实现圆度误差的统一评定研究[J]. 计量学报,2008,29(2):106-109.
[15]王伯平, 王薇, 孙大刚,等. 基于混沌遗传算法的圆度误差测量[J]. 计量学报,2009,30(6): 515-516.
[16]崔长彩,黄富贵,张认成,等. 粒子群优化算法及其在圆度误差评定中的应用[J]. 计量学报,2006,27(4): 317-320.
[17]吴新杰, 陶崇娥. 基于混沌和蚁群算法测量圆度误差[J]. 辽宁大学学报(自然科学版),2008,35(1):11-13.
[18]叶明,唐敦兵,赵转萍,等. 基于人工鱼群与几何混合优化的圆度误差评定算法[J].南京航空航天大学学报,2013, 45(4):526-531.
[19]Stron R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R].Technical Report TR-95-012, ICSI, 1995.
[20]邱威, 张建华, 刘念. 微分进化算法在电力系统中的应用[J]. 现代电力,2009,26(5):11-17.
[21]张仁勇, 罗建军, 程潏,等. 基于微分进化算法的深空轨道全局优化设计[J]. 力学学报,2012,44(6):1079-1083.
[22]刘棕成, 董新民, 陈勇. 基于微分进化算法的二自由度PID控制器参数优化[J].飞行力学,2012,30(2):139-146.
[23]苏海军, 杨煜普, 王宇嘉. 微分进化算法的研究综述[J].系统工程与电子技术,2008, 30(9):1793-1797.
[24]刘长良, 于明. 微分进化算法研究及其在热工过程参数辨识中的应用[J].化工自动化及仪表,2011, 38(3): 269-273.
[25]Jywe W Y, Liu C H, Chen C K. The min-max problem for evaluating the form error of a circle[J]. Measurement,1999, 26(4): 273-282.
[26]Rudolph G. Convergence analysis of canonical genetic algorithms[J].IEEE Transaction on Neural Network,1994, 5(1): 96-101. |