|
|
Control Parameters Optimum of Control Charts for Measurement Process Control Using Bootstrap Entropy Fusion Model |
SUN Qun1, ZHAO Ying1, PAN Quan-ke2 |
1. School of Automobile and Transportation Engineering, Liaocheng University, Liaocheng,Shandong 252059, China
2. School of Computer Science, Liaocheng University, Liaocheng, Shandong 252059, China |
|
|
Abstract The Shewhart control chart is a main method to analyze check data. However, the Shewhart control chart is apt to cause false alarm under small amount of sample. For this problem, a method of Bootstrap Entropy Fusion Model is proposed to optimize control parameters of the Shewhart control chart. The bootstrap method is used to enlarge the amount of sample firstly. Based on this work, the maxim entropy is used to describe probability density functions of check data distribution parameters and estimate the mean value and variance of check data distribution. Therefore, control parameters are optimized. Experiments show that the optimized control parameters approach theory true values and the probability of false alarm is decreased.
|
|
|
|
|
|
[1]ISO. ISO10012:2003,Measurement management systems——Requirements for measurement processes and measuring equipment[S]. 2003.
[2]国家质量监督检验检疫总局. GB/T 27025—2008, 检测和校准实验室的通用要求[S]. 2008.
[3]国家质量监督检验检疫总局. JJF 1069—2007, 法定计量检定机构考核规范[S]. 2007.
[4]李志强, 杨铁忠, 陈怀艳. 军事装备技术保障中的计量确认和测量过程控制方法研究[J]. 电子测量与仪器学报, 2004, 18(3): 1-7.
[5]孙群, 赵颖, 孟晓风. 基于动态修正贝叶斯模型的自动测试系统量值稳定性监控方法[J]. 兵工学报, 2008, 29(8): 990-994.
[6]赵宇, 陈松涛. GM(1,1)模型在虚拟仪器测量过程控制中的应用[J]. 哈尔滨工业大学学报, 2009, 41(7): 249-251.
[7]Aebtarma S, Bouguila N. An empirical evaluation of attribute control charts for monitoring defects [J]. Expert Systems with Applications, 2011, 38(6): 7869-7880.
[8]Panagiotidoua S, Nenes G. An economically designed,inte-grated quality and maintenance model using an adaptive Shewhart chart[J]. Reliability Engineering & System Safety, 2009, 94(3): 732-741.
[9]Tsai T, Lin C, Wu S. Alternative attribute control charts based on improved square root transformation[J]. Tamsui Oxford Journal of Mathematical Sciences, 2006, 22 (1): 61-72.
[10] Yang S F, Lin J S, et al. A new nonparametric EWMA sign control chart[J]. Expert Systems with Applications, 2011, 38(5): 6239-6243.
[11]Albers W. Empirical nonparametric control charts for high-quality processes[J]. Journal of Statistical Planning and Inference, 2011, 141(9): 3151-3159.
[12]孙群, 赵颖, 孟晓风. 基于小样本数据特征的测量过程控制图参数优化[J]. 系统仿真学报, 2008, 20(11): 2987-2990.
[13]张公绪, 孙静. 新编质量管理学[M]. 北京: 高等教育出版社, 2003.
[14]夏新涛, 陈晓阳, 张永振,等. 航天轴承摩擦力矩的最大熵概率分布与bootstrap推断[J]. 宇航学报, 28(5): 1395-1400.
[15]夏新涛, 陈晓阳, 张永振, 等. 滚动轴承乏信息试验分析与评估[M]. 北京: 科学出版社, 2007. |
|
|
|