1. School of Mechanical Engineering and Automation, Zhejiang Sci-tech University, Hangzhou, Zhejiang 310018, China;
2. School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China;
3. National Institute of Metrology, Beijing 100029, China
Abstract:The shear piezoceramics stack micro-displacement measurement system is built. The second-order, third-order, forth-order least square fitting formulas of voltage with displacement are obtained by the micro-displacement measurement experiments of 5 different target voltage. The result of nonlinear correction used by the third-order least square fitting formula is the best one, the maximal nonlinear error is 3nm when the shear piezoceramics stack moving 1 050nm. The nonlinear correction for different target displacement is realized by spline fitting of the polynomial coefficient to get the relational polynomial expression. The maximal nonlinear error is 4 nm when the shear piezoceramics stack moving 900 nm, which is only 11% of the initial nonlinear error.
[1]Gu G Y, Zhu L M, Su C Y, et al. Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey[J].IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 313-332.
[2]Cheng L, Liu W C, Hou Z G, et al. Neural-Network based Nonlinear Model Predictive Control for Piezoelectric Actuators[J].IEEE Transactions on Industrial Electronics, 2015, 62(12): 7717-7727.
[3]孙立宁, 孙绍云, 曲东升, 等. 基于PZT的微驱动定位系统及控制方法的研究[J]. 光学 精密工程, 2004, 12(1): 55-59.
[4]魏燕定, 陶慧峰. 压电驱动器迟滞特性的Preisach模型研究[J]. 压电与声光, 2004, 26(5): 364-367.
[5]李庆贤, 高思田, 李伟, 等. 基于HSPMI的激光干涉仪位移校准系统的构建及实验研究[J]. 计量学报, 2013,34(6): 519-523.
[6]李福良. 基于PA85的新型压电陶瓷驱动电源[J]. 压电与声光, 2005, 27(4): 392-394.
[7]赖志林, 刘向东, 陈振, 等. 基于Preisach逆模型的压电陶瓷执行器迟滞补偿控制[J]. 北京理工大学学报, 2011, 31(4): 447-451.
[8]范伟, 余晓芬, 奚琳. 压电陶瓷驱动系统及控制方法研究[J]. 光学 精密工程, 2007, 15(3): 368-371.