Abstract:The high pressure pVTt gas flow standard facility in National Institute of Metrology(China), the expanded uncertainty of the facility could be 0.06% (k=2), while the expanded uncertainty of discharge coefficient of calibrated sonic nozzle is 0.08% (k=2). The measurement capability of the new pVTt facility was verified with the comparisons among the existed pVTt facility and the gas flow facilities in Physikalisch-Technische Bundesanstalt(Germany) with 3 sonic nozzles as transfer meters.The comparison results show in good agreement with each other of devices.
曹培娟,李春辉,崔骊水,张翰. 高压pVTt法气体流量标准装置不确定度实现及验证[J]. 计量学报, 2017, 38(6): 697-701.
CAO Pei-juan,LI Chun-hui,CUI Li-shui,ZHANG Han. The Verification on the Capability of High Pressure pVTt Standard Facility. Acta Metrologica Sinica, 2017, 38(6): 697-701.
[1]ISO 9300. Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles[S].2005.
[2]Wright J D, Johnson A N , Moldover M R. Design and uncertainty analysis for a PVTt gas flow standard[J]. Journal of Research of the National Institute of Standards and Technology, 2003, 108(1): 21-47.
[3]李鹏, 暴冰, 李春辉. 浅析音速喷嘴装置间的相互作用[J]. 计量学报, 2015, 35(6A):553-55.
[4]张翰, 李春辉, 崔骊水, 等. 高压环道气体流量标准装置[J]. 计量学报, 2017, 38(3): 324-327.
[5]李春辉, 李鹏. 基于雷诺数对涡轮流量计仪表特性评估方法探析[J]. 计量学报, 2015, 36(6A):610-612.
[6]Li C H, Cui L S, Wang C. The new pVTt facility in NIM[C]//FLOMEKO, Paris, France, 2013.
[7]曹培娟, 李春辉, 崔骊水, 等. 正压法pVTt气体流量标准装置的建立[J]. 计量技术, 2015, (9):42-44.
[8]王东伟, 段慧明. pVTt法微小气体流量标准装置[J]. 现代计量测试, 2000, (3):37-42.
[9]Mickan B, Kramer R, Dopheide D. Comparisons by PTB, NIST, and LNE-LADG in air and natural gas with critical venture nozzles agree with 0.05%[C]// 6th ISFFM, Queretaro, Mexico, 2006.
[10]Brunnemann H, Aschenbrenner A. Calibrtion of volume meters for gas by means of a bell prover taking into account atmospheric pressure fluctuations[D]. Cambridge:MIT, 1994.
[11]Bremser W, Hasselbarth W, Hirlehei U, et al. Uncertainty Analysis and Long-Term Stability Investigation of the German Primary High Pressure Natural Gas Test Facility Pigsar[C]//FLOMEKO, Groningen, Netherlands, 2003.
[12]Ishibashi M, Funaki T. Boundary layer transition in high precision critical nozzles of various shapes[C]// FLOMEKO, Paris, France, 2013.
[13]Cox M G. Evaluation of key comparison data[J]. Metrologia, 2002, 39: 589-595.
[14]Cox M G. The evaluation of key comparison data: determining the largest consistent subset[J]. Metrologia, 2007, 44:187-200.