2025年04月07日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2016, Vol. 37 Issue (4): 406-410    DOI: 10.3969/j.issn.1000-1158.2016.04.16
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于改进奇异值分解和经验模式分解的滚动轴承早期微弱故障特征提取
孟宗,谷伟明,胡猛,熊景鸣
燕山大学河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
Fault Feature Extraction of Rolling Bearing Incipient Fault Based on Improved Singular Value Decomposition and EMD
MENG Zong,GU Wei-ming,HU Meng,XIONG Jing-ming
Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (1581 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对滚动轴承早期微弱故障特征难以提取的问题,提出了改进奇异值分解(SVD)和经验模式分解(EMD)的滚动轴承早期微弱故障特征提取方法。首先用多分辨奇异值分解将信号分成具有不同分辨率的近似和细节信号,然后对近似信号用奇异值差分谱进行消噪,对消噪后的信号进行经验模态分解,将得到的各本征模函数分量进行希尔伯特包络解调,从而获得滚动轴承故障特征信息,最后通过对滚动轴承早期内圈故障的诊断实验证明了该方法的有效性
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟宗
谷伟明
胡猛
熊景鸣
关键词 计量学故障特征提取多分辨奇异值经验模式分解轴承故障诊断    
Abstract:To extract fault characteristics from the original signal is hard. For this reason, a novel integrated of incipient fault diagnosis method is presented based on the principle of the improved singular value decomposition(SVD) and empirical mode decomposition(EMD). Firstly, based on multi-resolution singular value decomposition, the original signal is decomposed into approximation and detail signals with different resolution. Then the noise in approximation signal is eliminated by using difference spectrum of singular value. The signal after de-noising is decomposed by EMD and a group of Intrinsic Mode Functions (IMF) is obtained. The IMFs were demodulated with Hilbert transform, and envelope spectrum at each band was obtained, through these procedures the faint feature information can be extracted. The effectiveness of this method is confirmed by the experiment of rolling bearing inner race incipient fault.
Key wordsmetrology    fault feature extraction    multi-resolution singular value decomposition    EMD    diagnose bearing faults
收稿日期: 2015-04-02      发布日期: 2016-05-31
PACS:  TB936  
基金资助:国家自然科学基金(51105323);河北省自然科学基金(E2015203356,E2012203166)
通讯作者: 孟宗     E-mail: mzysu@ysu.edu.cn
作者简介: 孟宗(1977-),男,河北保定人,燕山大学教授,博士,主要研究方向为信号分析与处理、旋转机械故障诊断。mzysu@ysu.edu.cn
引用本文:   
孟宗,谷伟明,胡猛,熊景鸣. 基于改进奇异值分解和经验模式分解的滚动轴承早期微弱故障特征提取[J]. 计量学报, 2016, 37(4): 406-410.
MENG Zong,GU Wei-ming,HU Meng,XIONG Jing-ming. Fault Feature Extraction of Rolling Bearing Incipient Fault Based on Improved Singular Value Decomposition and EMD. Acta Metrologica Sinica, 2016, 37(4): 406-410.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2016.04.16     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2016/V37/I4/406
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn