Abstract:Graphene is a novel material with a number of unique properties, which is a single layer of carbon packed in a hexagonal lattice. Graphene exhibits relativistic Dirac electrons properties for the electronic structure, and that is different from usual three-dimensional materials. Graphene is the most ideal two-dimensional electron gas system in all available materials, which makes it interesting for both fundamental studies and future applications. The structure, properties, preparation methods and future applications of graphene are reviewed, and the potential applications in metrology are discussed.
[1]Boehm H P, Clauss A, Hofmann U, et al. Dunnste Kohlenstoff-Folien [J]. Zeitschrift Für Naturforschung B, 1962, 17(3): 150-153.
[2]Bommel A V,Crombeen J,Tooren A V. LEED and Auger electron observations of the SiC(0001) surface [J].Surface Science, 1975, 48(2): 463-472.
[3]Forbeaux I, Themlin J, Debever J. Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure [J]. Physical Review B, 1998, 58(24): 16396-16406.
[4]Oshima C, Itoh A, Rokuta E, et al. A hetero-epitaxial-double-atomic-layer system of monolayer graphene/monolayer h-BN on Ni(111) [J]. Solid State Comm, 2000, 116(1): 37 -40.
[5]The Nobel Prize in Physics 2010-Scientific Background [EB]. http://nobelprize. org/nobel_prizes/physics/laureates/2010/sci.html.2011-02-26.
[6]Novoselov K S, Geim A K, Morozov S V,et al. Electric field effect in atomically thin carbon films [J].Science, 2004,306(5696): 666-669.
[7]Graphene [DB]. http://en.wikipedia.org/wiki/Graphene, 2011-02-23.
[8]Klein O. Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac [J].Z Phys, 1929, 53 (3-4):157-165.
[9]Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in grapheme [J].Nature Physics, 2006, 2(9): 620-625.
[10]Young A F, Kim P. Quantum interference and Kleintunnelling in graphene heterojunctions [J].Nature Physics, 2009, 5(3): 222-226.
[11]Rusin T M, Zawadzki W. Theory of electron Zitterbewegung in graphene probed by femtosecond laser pulses [J]. Phys Rev B, 2009, 80(4):45416-45424.
[12]Novoselov K S, Geim A K, S V Morozov,et al. Two-dimensional gas of massless Dirac fermions in graphene [J].Nature, 2005,438(11):197-200.
[13]Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berrys phase in graphene [J].Nature, 2005, 438(11): 201-204.
[14]Novoselov K S, Jiang Z, Zhang Y B,et al. Room-temperature quantum Hall effect in graphene [J].Science,2007,315(5817):1379.
[15]Tzalenchuk A, Lara-Avila S, Kalaboukhov A, et al. Towards a quantum resistance standard based on epitaxial graphene [J].Nature Nanotechnology, 2010,5(1):186-189.
[16]Nair R R, Blake P, Grigorenko A N, et al. Fine Structure Constant Defines Visual Transparency of Graphene [J].Science, 2008, 320(5881):1308.